Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,121 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import tiktoken
|
4 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load the trained model
|
7 |
@st.cache_resource
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import tiktoken
|
4 |
+
from dataclasses import dataclass
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class GPTConfig:
|
8 |
+
block_size: int = 1024 # max sequence length
|
9 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
10 |
+
n_layer: int = 12 # number of layers
|
11 |
+
n_head: int = 12 # number of heads
|
12 |
+
n_embd: int = 768 # embedding dimension
|
13 |
+
|
14 |
+
|
15 |
+
class GPT(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__()
|
19 |
+
self.config = config
|
20 |
+
|
21 |
+
self.transformer = nn.ModuleDict(dict(
|
22 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
23 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
24 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
25 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
26 |
+
))
|
27 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
28 |
+
|
29 |
+
# weight sharing
|
30 |
+
self.transformer.wte.weight = self.lm_head.weight
|
31 |
+
|
32 |
+
# weight initialization
|
33 |
+
self.apply(self._init_weights)
|
34 |
+
|
35 |
+
def _init_weights(self, module):
|
36 |
+
if isinstance(module, nn.Linear):
|
37 |
+
std = 0.02
|
38 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
39 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
40 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
41 |
+
if module.bias is not None:
|
42 |
+
torch.nn.init.zeros_(module.bias)
|
43 |
+
elif isinstance(module, nn.Embedding):
|
44 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
45 |
+
|
46 |
+
def print_num_parameters(self):
|
47 |
+
num_params = sum(p.numel() for p in self.parameters())
|
48 |
+
print(f"Number of model parameters: {num_params}")
|
49 |
+
|
50 |
+
def forward(self, idx, targets=None):
|
51 |
+
# idx is of shape (B, T)
|
52 |
+
B, T = idx.size()
|
53 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
54 |
+
# forward the token and posisition embeddings
|
55 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
56 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
57 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
58 |
+
x = tok_emb + pos_emb
|
59 |
+
# forward the blocks of the transformer
|
60 |
+
for block in self.transformer.h:
|
61 |
+
x = block(x)
|
62 |
+
# forward the final layernorm and the classifier
|
63 |
+
x = self.transformer.ln_f(x)
|
64 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
65 |
+
loss = None
|
66 |
+
if targets is not None:
|
67 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
68 |
+
return logits, loss
|
69 |
+
|
70 |
+
@classmethod
|
71 |
+
def from_pretrained(cls, model_type):
|
72 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
73 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
74 |
+
from transformers import GPT2LMHeadModel
|
75 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
76 |
+
|
77 |
+
# n_layer, n_head and n_embd are determined from model_type
|
78 |
+
config_args = {
|
79 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
80 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
81 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
82 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
83 |
+
}[model_type]
|
84 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
85 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
86 |
+
# create a from-scratch initialized minGPT model
|
87 |
+
config = GPTConfig(**config_args)
|
88 |
+
model = GPT(config)
|
89 |
+
sd = model.state_dict()
|
90 |
+
sd_keys = sd.keys()
|
91 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
92 |
+
|
93 |
+
# init a huggingface/transformers model
|
94 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
95 |
+
sd_hf = model_hf.state_dict()
|
96 |
+
|
97 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
98 |
+
sd_keys_hf = sd_hf.keys()
|
99 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
100 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
101 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
102 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
103 |
+
# this means that we have to transpose these weights when we import them
|
104 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
105 |
+
for k in sd_keys_hf:
|
106 |
+
if any(k.endswith(w) for w in transposed):
|
107 |
+
# special treatment for the Conv1D weights we need to transpose
|
108 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
109 |
+
with torch.no_grad():
|
110 |
+
sd[k].copy_(sd_hf[k].t())
|
111 |
+
else:
|
112 |
+
# vanilla copy over the other parameters
|
113 |
+
assert sd_hf[k].shape == sd[k].shape
|
114 |
+
with torch.no_grad():
|
115 |
+
sd[k].copy_(sd_hf[k])
|
116 |
+
|
117 |
+
return model
|
118 |
+
|
119 |
|
120 |
# Load the trained model
|
121 |
@st.cache_resource
|