Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install required libraries
|
2 |
+
!pip install gradio torch gtts openai-whisper
|
3 |
+
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import whisper
|
7 |
+
from gtts import gTTS
|
8 |
+
import gradio as gr
|
9 |
+
from groq import Groq # Assuming Groq is installed and accessible
|
10 |
+
|
11 |
+
# Load the Whisper model
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
model = whisper.load_model("base", device=device)
|
14 |
+
|
15 |
+
# Set your Groq API key
|
16 |
+
os.environ["GROQ_API_KEY"] = "your_groq_api_key_here"
|
17 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
18 |
+
|
19 |
+
# Function to transcribe audio using Whisper
|
20 |
+
def transcribe(audio_path):
|
21 |
+
try:
|
22 |
+
result = model.transcribe(audio_path)
|
23 |
+
return result["text"]
|
24 |
+
except Exception as e:
|
25 |
+
return f"Error during transcription: {e}"
|
26 |
+
|
27 |
+
# Function to get response from Groq's LLM
|
28 |
+
def get_llm_response(text):
|
29 |
+
try:
|
30 |
+
chat_completion = client.chat.completions.create(
|
31 |
+
messages=[{"role": "user", "content": text}],
|
32 |
+
model="llama-3.3-70b-versatile",
|
33 |
+
)
|
34 |
+
return chat_completion.choices[0].message.content
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error during LLM response generation: {e}"
|
37 |
+
|
38 |
+
# Function to convert text to speech
|
39 |
+
def text_to_speech(text):
|
40 |
+
try:
|
41 |
+
tts = gTTS(text, lang="en")
|
42 |
+
audio_path = "response.mp3"
|
43 |
+
tts.save(audio_path)
|
44 |
+
return audio_path
|
45 |
+
except Exception as e:
|
46 |
+
return f"Error during text-to-speech conversion: {e}"
|
47 |
+
|
48 |
+
# Combined function for processing audio input and generating audio output
|
49 |
+
def process_audio(audio_path):
|
50 |
+
transcription = transcribe(audio_path)
|
51 |
+
if "Error" in transcription:
|
52 |
+
return transcription, None, None
|
53 |
+
|
54 |
+
llm_response = get_llm_response(transcription)
|
55 |
+
if "Error" in llm_response:
|
56 |
+
return transcription, llm_response, None
|
57 |
+
|
58 |
+
audio_response = text_to_speech(llm_response)
|
59 |
+
if "Error" in audio_response:
|
60 |
+
return transcription, llm_response, audio_response
|
61 |
+
|
62 |
+
return transcription, llm_response, audio_response
|
63 |
+
|
64 |
+
# Build the Gradio interface
|
65 |
+
with gr.Blocks() as app:
|
66 |
+
gr.Markdown("## Real-Time Voice-to-Voice Chatbot")
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
audio_input = gr.Audio(type="filepath", label="Speak", interactive=True)
|
70 |
+
with gr.Column():
|
71 |
+
transcription_output = gr.Textbox(label="Transcription (Text)", lines=2)
|
72 |
+
response_output = gr.Textbox(label="Response (LLM Text)", lines=2)
|
73 |
+
audio_output = gr.Audio(label="Response (Audio)")
|
74 |
+
submit_button = gr.Button("Submit")
|
75 |
+
|
76 |
+
# Connect the input and output components
|
77 |
+
submit_button.click(
|
78 |
+
process_audio,
|
79 |
+
inputs=[audio_input],
|
80 |
+
outputs=[transcription_output, response_output, audio_output],
|
81 |
+
)
|
82 |
+
|
83 |
+
# Launch the app
|
84 |
+
app.launch()
|