Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForImageClassification, AutoProcessor
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and processor from Hugging Face
|
6 |
+
model_name = "dima806/facial_age_image_detection"
|
7 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
8 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Define the prediction function
|
11 |
+
def predict(image):
|
12 |
+
# Process the input image
|
13 |
+
inputs = processor(images=image, return_tensors="pt")
|
14 |
+
# Perform the prediction
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model(**inputs)
|
17 |
+
|
18 |
+
# Get the model's original outputs (e.g., logits or probabilities)
|
19 |
+
predictions = outputs.logits
|
20 |
+
|
21 |
+
# Convert predictions to a list and round to 2 decimal places if necessary
|
22 |
+
predictions_list = predictions.tolist()
|
23 |
+
rounded_predictions = [[round(pred, 2) for pred in prediction] for prediction in predictions_list]
|
24 |
+
|
25 |
+
return rounded_predictions
|
26 |
+
|
27 |
+
# Create Gradio interface
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=predict,
|
30 |
+
inputs="image",
|
31 |
+
outputs="label", # Use the model's original output type
|
32 |
+
title="Facial Age Prediction",
|
33 |
+
description="This application predicts your age from a facial image."
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the Gradio application
|
37 |
+
iface.launch(share=True)
|