kamalcst commited on
Commit
1e9c865
·
verified ·
1 Parent(s): 40a34f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -1
app.py CHANGED
@@ -1,3 +1,37 @@
1
  import gradio as gr
 
 
2
 
3
- gr.load("models/dima806/facial_age_image_detection").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForImageClassification, AutoProcessor
3
+ import torch
4
 
5
+ # Load the model and processor from Hugging Face
6
+ model_name = "dima806/facial_age_image_detection"
7
+ model = AutoModelForImageClassification.from_pretrained(model_name)
8
+ processor = AutoProcessor.from_pretrained(model_name)
9
+
10
+ # Define the prediction function
11
+ def predict(image):
12
+ # Process the input image
13
+ inputs = processor(images=image, return_tensors="pt")
14
+ # Perform the prediction
15
+ with torch.no_grad():
16
+ outputs = model(**inputs)
17
+
18
+ # Get the model's original outputs (e.g., logits or probabilities)
19
+ predictions = outputs.logits
20
+
21
+ # Convert predictions to a list and round to 2 decimal places if necessary
22
+ predictions_list = predictions.tolist()
23
+ rounded_predictions = [[round(pred, 2) for pred in prediction] for prediction in predictions_list]
24
+
25
+ return rounded_predictions
26
+
27
+ # Create Gradio interface
28
+ iface = gr.Interface(
29
+ fn=predict,
30
+ inputs="image",
31
+ outputs="label", # Use the model's original output type
32
+ title="Facial Age Prediction",
33
+ description="This application predicts your age from a facial image."
34
+ )
35
+
36
+ # Launch the Gradio application
37
+ iface.launch(share=True)