Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow
|
3 |
+
import numpy
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
model_path = "Coralhealth.pb"
|
7 |
+
model = tf.saved_model.load(model_path)
|
8 |
+
|
9 |
+
classes = [ "bleached" , "healthy" , ]
|
10 |
+
|
11 |
+
def run(image_path):
|
12 |
+
img = Image.open(image_path).convert('RGB')
|
13 |
+
img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS)
|
14 |
+
inp_numpy = numpy.array(img)[None]
|
15 |
+
inp = tensorflow.constant(inp_numpy, dtype='float32')
|
16 |
+
class_scores = model(inp)[0].numpy()
|
17 |
+
return class_scores
|
18 |
+
|
19 |
+
title = "Trash Detector"
|
20 |
+
description = (
|
21 |
+
""
|
22 |
+
)
|
23 |
+
|
24 |
+
examples = glob.glob("images/*.png")
|
25 |
+
|
26 |
+
interface = gr.Interface(
|
27 |
+
run,
|
28 |
+
inputs=[gr.components.Image(type="filepath")],
|
29 |
+
outputs="text",
|
30 |
+
title=title,
|
31 |
+
description=description,
|
32 |
+
examples=examples,
|
33 |
+
)
|
34 |
+
|
35 |
+
interface.queue().launch()
|