''' Created By Lewis Kamau Kimaru Sema translator fastapi implementation January 2024 Docker deployment ''' from fastapi import FastAPI, HTTPException, Request, Depends from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import HTMLResponse import uvicorn from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import ctranslate2 import sentencepiece as spm import fasttext import torch from datetime import datetime import pytz import time import os app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=False, allow_methods=["*"], allow_headers=["*"], ) # set this key as an environment variable hf_read_key = os.environ.get('huggingface_token') os.environ["HUGGINGFACEHUB_API_TOKEN"] = hf_read_key fasttext.FastText.eprint = lambda x: None # User interface templates_folder = os.path.join(os.path.dirname(__file__), "templates") # Get time of request def get_time(): nairobi_timezone = pytz.timezone('Africa/Nairobi') current_time_nairobi = datetime.now(nairobi_timezone) curr_day = current_time_nairobi.strftime('%A') curr_date = current_time_nairobi.strftime('%Y-%m-%d') curr_time = current_time_nairobi.strftime('%H:%M:%S') full_date = f"{curr_day} | {curr_date} | {curr_time}" return full_date, curr_time def load_models(): # build model and tokenizer model_name_dict = { #'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M', #'nllb-1.3B': 'facebook/nllb-200-1.3B', #'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B', #'nllb-3.3B': 'facebook/nllb-200-3.3B', #'nllb-moe-54b': 'facebook/nllb-moe-54b', } model_dict = {} for call_name, real_name in model_name_dict.items(): print('\tLoading model: %s' % call_name) model = AutoModelForSeq2SeqLM.from_pretrained(real_name) tokenizer = AutoTokenizer.from_pretrained(real_name) model_dict[call_name+'_model'] = model model_dict[call_name+'_tokenizer'] = tokenizer return model_dict # Load the model and tokenizer ..... only once! beam_size = 1 # change to a smaller value for faster inference device = "cpu" # or "cuda" print('(note-to-self)..... I play the Orchestra🦋.......') # Language Prediction model print("\n1️⃣importing Language Prediction model") lang_model_file = "lid218e.bin" lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file) lang_model = fasttext.load_model(lang_model_full_path) # Load the source SentencePiece model print("\n2️⃣importing SentencePiece model") sp_model_file = "spm.model" sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file) sp = spm.SentencePieceProcessor() sp.load(sp_model_full_path) # Import The Translator model print("\n3️⃣importing Translator model") ct_model_file = "sematrans-3.3B" ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file) translator = ctranslate2.Translator(ct_model_full_path, device) #model_dict = load_models() print('\nDone importing models 🙈\n') def translate_detect(userinput: str, target_lang: str): source_sents = [userinput] source_sents = [sent.strip() for sent in source_sents] target_prefix = [[target_lang]] * len(source_sents) # Predict the source language predictions = lang_model.predict(source_sents[0], k=1) source_lang = predictions[0][0].replace('__label__', '') # Subword the source sentences source_sents_subworded = sp.encode(source_sents, out_type=str) source_sents_subworded = [[source_lang] + sent + [""] for sent in source_sents_subworded] # Translate the source sentences translations = translator.translate_batch( source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix, ) translations = [translation[0]['tokens'] for translation in translations] # Desubword the target sentences translations_desubword = sp.decode(translations) translations_desubword = [sent[len(target_lang):] for sent in translations_desubword] # Return the source language and the translated text return source_lang, translations_desubword def translate_enter(userinput: str, source_lang: str, target_lang: str): source_sents = [userinput] source_sents = [sent.strip() for sent in source_sents] target_prefix = [[target_lang]] * len(source_sents) # Subword the source sentences source_sents_subworded = sp.encode(source_sents, out_type=str) source_sents_subworded = [[source_lang] + sent + [""] for sent in source_sents_subworded] # Translate the source sentences translations = translator.translate_batch(source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix) translations = [translation[0]['tokens'] for translation in translations] # Desubword the target sentences translations_desubword = sp.decode(translations) translations_desubword = [sent[len(target_lang):] for sent in translations_desubword] # Return the source language and the translated text return translations_desubword[0] def translate_faster(userinput3: str, source_lang3: str, target_lang3: str): if len(model_dict) == 2: model_name = 'nllb-moe-54b' start_time = time.time() model = model_dict[model_name + '_model'] tokenizer = model_dict[model_name + '_tokenizer'] translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source_lang3, tgt_lang=target_lang3) output = translator(userinput3, max_length=400) end_time = time.time() output = output[0]['translation_text'] result = {'inference_time': end_time - start_time, 'source': source, 'target': target, 'result': output} return result @app.get("/", response_class=HTMLResponse) async def read_root(request: Request): return HTMLResponse(content=open(os.path.join(templates_folder, "translator.html"), "r").read(), status_code=200) @app.post("/translate_detect/") async def translate_detect_endpoint(request: Request): datad = await request.json() userinputd = datad.get("userinput") target_langd = datad.get("target_lang") dfull_date = get_time()[0] print(f"\nrequest: {dfull_date}\nTarget Language; {target_langd}, User Input: {userinputd}\n") if not userinputd or not target_langd: raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.") source_langd, translated_text_d = translate_detect(userinputd, target_langd) dcurrent_time = get_time()[1] print(f"\nresponse: {dcurrent_time}; ... Source_language: {source_langd}, Translated Text: {translated_text_d}\n\n") return { "source_language": source_langd, "translated_text": translated_text_d[0], } @app.post("/translate_enter/") async def translate_enter_endpoint(request: Request): datae = await request.json() userinpute = datae.get("userinput") source_lange = datae.get("source_lang") target_lange = datae.get("target_lang") efull_date = get_time()[0] print(f"\nrequest: {efull_date}\nSource_language; {source_lange}, Target Language; {target_lange}, User Input: {userinpute}\n") if not userinpute or not target_lange: raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.") translated_text_e = translate_enter(userinpute, source_lange, target_lange) ecurrent_time = get_time()[1] print(f"\nresponse: {ecurrent_time}; ... Translated Text: {translated_text_e}\n\n") return { "translated_text": translated_text_e, } @app.post("/translate_faster/") async def translate_faster_endpoint(request: Request): dataf = await request.json() userinputf = datae.get("userinput") source_langf = datae.get("source_lang") target_langf = datae.get("target_lang") ffull_date = get_time()[0] print(f"\nrequest: {ffull_date}\nSource_language; {source_langf}, Target Language; {target_langf}, User Input: {userinputf}\n") if not userinputf or not target_langf: raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.") translated_text_f = translate_faster(userinputf, source_langf, target_langf) fcurrent_time = get_time()[1] print(f"\nresponse: {fcurrent_time}; ... Translated Text: {translated_text_f}\n\n") return { "translated_text": translated_text_f, } print("\nAPI started successfully 😁\n")