Update app.py
Browse files
app.py
CHANGED
@@ -276,47 +276,89 @@ def main():
|
|
276 |
st.write(f"**{MORAL_FOUNDATIONS[foundation]}**: {score:.2%}")
|
277 |
|
278 |
with tab2:
|
279 |
-
st.subheader("
|
280 |
-
emotional_trajectory = analyzer.analyze_emotional_trajectory(text)
|
281 |
|
282 |
-
|
283 |
-
scaled_trajectory = np.array(emotional_trajectory) * 2 - 1 # Scale to [-1, 1]
|
284 |
-
|
285 |
-
# Create segment labels
|
286 |
-
num_segments = len(scaled_trajectory)
|
287 |
-
segment_labels = [f"{i+1}" for i in range(num_segments)]
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
)
|
302 |
-
|
303 |
-
|
304 |
-
trajectory_fig.update_layout(
|
305 |
-
title='Emotional Flow Throughout the Speech',
|
306 |
-
xaxis_title='Speech Segments',
|
307 |
-
yaxis_title='Emotional Tone',
|
308 |
-
yaxis=dict(
|
309 |
-
ticktext=['Very Negative', 'Neutral', 'Very Positive'],
|
310 |
-
tickvals=[-1, 0, 1],
|
311 |
-
range=[-1.1, 1.1],
|
312 |
-
gridcolor='lightgray'
|
313 |
-
),
|
314 |
-
hovermode='x unified',
|
315 |
-
showlegend=False,
|
316 |
-
plot_bgcolor='white'
|
317 |
-
)
|
318 |
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
with tab3:
|
322 |
st.subheader("Linguistic Analysis")
|
|
|
276 |
st.write(f"**{MORAL_FOUNDATIONS[foundation]}**: {score:.2%}")
|
277 |
|
278 |
with tab2:
|
279 |
+
st.subheader("Speech Trajectory Analysis")
|
|
|
280 |
|
281 |
+
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
with col1:
|
284 |
+
st.write("### Emotional Flow")
|
285 |
+
# Get raw sentiment scores
|
286 |
+
sentiment_results = [analyzer.sentiment_pipeline(segment)[0] for segment in analyzer.split_text(text)]
|
287 |
+
|
288 |
+
# Convert sentiment labels to numerical values
|
289 |
+
sentiment_values = [1 if result['label'] == 'POSITIVE' else -1 for result in sentiment_results]
|
290 |
+
|
291 |
+
# Create segment labels
|
292 |
+
num_segments = len(sentiment_values)
|
293 |
+
segment_labels = [f"{i+1}" for i in range(num_segments)]
|
294 |
+
|
295 |
+
trajectory_fig = go.Figure(data=go.Scatter(
|
296 |
+
x=segment_labels,
|
297 |
+
y=sentiment_values,
|
298 |
+
mode='lines+markers',
|
299 |
+
line=dict(
|
300 |
+
color='#1f77b4',
|
301 |
+
width=3
|
302 |
+
),
|
303 |
+
marker=dict(
|
304 |
+
size=8,
|
305 |
+
color='#1f77b4',
|
306 |
+
symbol='circle'
|
307 |
+
)
|
308 |
+
))
|
309 |
+
|
310 |
+
trajectory_fig.update_layout(
|
311 |
+
title='Emotional Flow Throughout the Speech',
|
312 |
+
xaxis_title='Speech Segments',
|
313 |
+
yaxis_title='Emotional Tone',
|
314 |
+
yaxis=dict(
|
315 |
+
ticktext=['Very Negative', 'Neutral', 'Very Positive'],
|
316 |
+
tickvals=[-1, 0, 1],
|
317 |
+
range=[-1.1, 1.1],
|
318 |
+
gridcolor='lightgray'
|
319 |
+
),
|
320 |
+
hovermode='x unified',
|
321 |
+
showlegend=False,
|
322 |
+
plot_bgcolor='white'
|
323 |
)
|
324 |
+
|
325 |
+
st.plotly_chart(trajectory_fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
+
with col2:
|
328 |
+
st.write("### Moral Foundations Flow")
|
329 |
+
# Get moral scores per segment
|
330 |
+
segments = analyzer.split_text(text)
|
331 |
+
moral_trajectories = {foundation: [] for foundation in MORAL_FOUNDATIONS}
|
332 |
+
|
333 |
+
for segment in segments:
|
334 |
+
segment_scores = analyzer.analyze_moral_foundations(segment)
|
335 |
+
for foundation, score in segment_scores.items():
|
336 |
+
moral_trajectories[foundation].append(score)
|
337 |
+
|
338 |
+
moral_fig = go.Figure()
|
339 |
+
for foundation, scores in moral_trajectories.items():
|
340 |
+
moral_fig.add_trace(go.Scatter(
|
341 |
+
x=list(range(1, len(scores) + 1)),
|
342 |
+
y=scores,
|
343 |
+
name=MORAL_FOUNDATIONS[foundation],
|
344 |
+
mode='lines+markers'
|
345 |
+
))
|
346 |
+
|
347 |
+
moral_fig.update_layout(
|
348 |
+
title='Moral Foundations Flow',
|
349 |
+
xaxis_title='Speech Segments',
|
350 |
+
yaxis_title='Foundation Strength',
|
351 |
+
hovermode='x unified',
|
352 |
+
plot_bgcolor='white',
|
353 |
+
showlegend=True,
|
354 |
+
legend=dict(
|
355 |
+
yanchor="top",
|
356 |
+
y=0.99,
|
357 |
+
xanchor="left",
|
358 |
+
x=1.05
|
359 |
+
)
|
360 |
+
)
|
361 |
+
st.plotly_chart(moral_fig)
|
362 |
|
363 |
with tab3:
|
364 |
st.subheader("Linguistic Analysis")
|