Update app.py
Browse files
app.py
CHANGED
@@ -11,94 +11,87 @@ bert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv2")
|
|
11 |
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
|
12 |
|
13 |
# Load AraBERT model for emotion classification
|
14 |
-
emotion_model = AutoModelForSequenceClassification.from_pretrained("
|
15 |
emotion_classifier = pipeline("text-classification", model=emotion_model, tokenizer=bert_tokenizer)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# Generate embeddings
|
32 |
-
with torch.no_grad():
|
33 |
-
outputs = bert_model(**inputs)
|
34 |
-
|
35 |
-
# Get the mean of the last hidden state as the embedding
|
36 |
-
embedding = outputs.last_hidden_state.mean(dim=1).numpy()
|
37 |
-
all_embeddings.append(embedding[0]) # Remove batch dimension
|
38 |
-
|
39 |
-
return np.array(all_embeddings)
|
40 |
-
|
41 |
-
# Function to perform emotion classification with proper truncation
|
42 |
-
def classify_emotions(texts):
|
43 |
-
emotions = []
|
44 |
-
for text in texts:
|
45 |
-
# Process text in chunks if it's too long
|
46 |
-
if len(bert_tokenizer.encode(text)) > 512:
|
47 |
-
chunks = [text[i:i + 512] for i in range(0, len(text), 512)]
|
48 |
-
# Take the emotion of the first chunk (usually contains the most relevant information)
|
49 |
-
emotion = emotion_classifier(chunks[0])[0]['label']
|
50 |
else:
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
# Function to process the uploaded file and summarize by country
|
56 |
def process_and_summarize(uploaded_file, top_n=50):
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
# Validate required columns
|
67 |
-
required_columns = ['country', 'poem']
|
68 |
-
missing_columns = [col for col in required_columns if col not in df.columns]
|
69 |
-
if missing_columns:
|
70 |
-
st.error(f"Missing columns: {', '.join(missing_columns)}")
|
71 |
-
return None, None
|
72 |
-
|
73 |
-
# Parse and preprocess the file
|
74 |
-
df['country'] = df['country'].str.strip()
|
75 |
-
df = df.dropna(subset=['country', 'poem'])
|
76 |
-
|
77 |
-
# Initialize BERTopic
|
78 |
-
topic_model = BERTopic(language="arabic")
|
79 |
|
80 |
# Group by country
|
81 |
summaries = []
|
82 |
for country, group in df.groupby('country'):
|
83 |
st.info(f"Processing poems for {country}...")
|
84 |
|
85 |
-
# Get texts for this country
|
86 |
texts = group['poem'].dropna().tolist()
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
emotions = classify_emotions(texts)
|
91 |
-
|
92 |
-
# Generate embeddings and fit topic model
|
93 |
-
st.info(f"Generating embeddings and topics for {country}...")
|
94 |
-
embeddings = generate_embeddings(texts)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
try:
|
|
|
|
|
|
|
97 |
topics, _ = topic_model.fit_transform(texts, embeddings)
|
98 |
|
99 |
-
#
|
100 |
-
top_topics = Counter(topics).most_common(top_n)
|
101 |
-
top_emotions = Counter(
|
102 |
|
103 |
summaries.append({
|
104 |
'country': country,
|
@@ -120,7 +113,8 @@ uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
|
|
120 |
|
121 |
if uploaded_file is not None:
|
122 |
try:
|
123 |
-
top_n = st.number_input("Select the number of top topics/emotions to display:",
|
|
|
124 |
|
125 |
summaries, topic_model = process_and_summarize(uploaded_file, top_n=top_n)
|
126 |
if summaries is not None:
|
@@ -130,13 +124,27 @@ if uploaded_file is not None:
|
|
130 |
for summary in summaries:
|
131 |
st.write(f"### {summary['country']}")
|
132 |
st.write(f"Total Poems: {summary['total_poems']}")
|
133 |
-
|
134 |
-
st.write(
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
st.write("### Global Topic Information:")
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
except Exception as e:
|
142 |
-
st.error(f"Error: {e}")
|
|
|
11 |
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
|
12 |
|
13 |
# Load AraBERT model for emotion classification
|
14 |
+
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
15 |
emotion_classifier = pipeline("text-classification", model=emotion_model, tokenizer=bert_tokenizer)
|
16 |
|
17 |
+
# Define emotion labels mapping
|
18 |
+
EMOTION_LABELS = {
|
19 |
+
'LABEL_0': 'Negative',
|
20 |
+
'LABEL_1': 'Positive',
|
21 |
+
'LABEL_2': 'Neutral'
|
22 |
+
}
|
23 |
+
|
24 |
+
def format_topics(topic_model, topic_counts):
|
25 |
+
"""Convert topic numbers to readable labels."""
|
26 |
+
formatted_topics = []
|
27 |
+
for topic_num, count in topic_counts:
|
28 |
+
if topic_num == -1:
|
29 |
+
topic_label = "Miscellaneous"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
else:
|
31 |
+
# Get the top words for this topic
|
32 |
+
words = topic_model.get_topic(topic_num)
|
33 |
+
# Take the top 3 words to form a topic label
|
34 |
+
topic_label = " | ".join([word for word, _ in words[:3]])
|
35 |
+
|
36 |
+
formatted_topics.append({
|
37 |
+
'topic': topic_label,
|
38 |
+
'count': count
|
39 |
+
})
|
40 |
+
return formatted_topics
|
41 |
+
|
42 |
+
def format_emotions(emotion_counts):
|
43 |
+
"""Convert emotion labels to readable text."""
|
44 |
+
formatted_emotions = []
|
45 |
+
for label, count in emotion_counts:
|
46 |
+
emotion = EMOTION_LABELS.get(label, label)
|
47 |
+
formatted_emotions.append({
|
48 |
+
'emotion': emotion,
|
49 |
+
'count': count
|
50 |
+
})
|
51 |
+
return formatted_emotions
|
52 |
+
|
53 |
+
# [Previous functions remain the same until process_and_summarize]
|
54 |
|
|
|
55 |
def process_and_summarize(uploaded_file, top_n=50):
|
56 |
+
# [Previous code remains the same until the summaries loop]
|
57 |
+
|
58 |
+
# Initialize BERTopic with specific parameters
|
59 |
+
topic_model = BERTopic(
|
60 |
+
language="arabic",
|
61 |
+
calculate_probabilities=True,
|
62 |
+
verbose=True
|
63 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Group by country
|
66 |
summaries = []
|
67 |
for country, group in df.groupby('country'):
|
68 |
st.info(f"Processing poems for {country}...")
|
69 |
|
|
|
70 |
texts = group['poem'].dropna().tolist()
|
71 |
+
batch_size = 10
|
72 |
+
all_emotions = []
|
73 |
+
all_embeddings = []
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
for i in range(0, len(texts), batch_size):
|
76 |
+
batch_texts = texts[i:i + batch_size]
|
77 |
+
|
78 |
+
st.info(f"Generating embeddings for batch {i//batch_size + 1}...")
|
79 |
+
batch_embeddings = generate_embeddings(batch_texts)
|
80 |
+
all_embeddings.extend(batch_embeddings)
|
81 |
+
|
82 |
+
st.info(f"Classifying emotions for batch {i//batch_size + 1}...")
|
83 |
+
batch_emotions = [classify_emotion(text) for text in batch_texts]
|
84 |
+
all_emotions.extend(batch_emotions)
|
85 |
+
|
86 |
try:
|
87 |
+
embeddings = np.array(all_embeddings)
|
88 |
+
|
89 |
+
st.info(f"Fitting topic model for {country}...")
|
90 |
topics, _ = topic_model.fit_transform(texts, embeddings)
|
91 |
|
92 |
+
# Format topics and emotions with readable labels
|
93 |
+
top_topics = format_topics(topic_model, Counter(topics).most_common(top_n))
|
94 |
+
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
95 |
|
96 |
summaries.append({
|
97 |
'country': country,
|
|
|
113 |
|
114 |
if uploaded_file is not None:
|
115 |
try:
|
116 |
+
top_n = st.number_input("Select the number of top topics/emotions to display:",
|
117 |
+
min_value=1, max_value=100, value=10)
|
118 |
|
119 |
summaries, topic_model = process_and_summarize(uploaded_file, top_n=top_n)
|
120 |
if summaries is not None:
|
|
|
124 |
for summary in summaries:
|
125 |
st.write(f"### {summary['country']}")
|
126 |
st.write(f"Total Poems: {summary['total_poems']}")
|
127 |
+
|
128 |
+
st.write(f"\nTop {top_n} Topics:")
|
129 |
+
for topic in summary['top_topics']:
|
130 |
+
st.write(f"• {topic['topic']}: {topic['count']} poems")
|
131 |
+
|
132 |
+
st.write(f"\nTop {top_n} Emotions:")
|
133 |
+
for emotion in summary['top_emotions']:
|
134 |
+
st.write(f"• {emotion['emotion']}: {emotion['count']} poems")
|
135 |
+
|
136 |
+
st.write("---")
|
137 |
+
|
138 |
+
# Display overall topics in a more readable format
|
139 |
st.write("### Global Topic Information:")
|
140 |
+
topic_info = topic_model.get_topic_info()
|
141 |
+
for _, row in topic_info.iterrows():
|
142 |
+
if row['Topic'] == -1:
|
143 |
+
topic_name = "Miscellaneous"
|
144 |
+
else:
|
145 |
+
words = topic_model.get_topic(row['Topic'])
|
146 |
+
topic_name = " | ".join([word for word, _ in words[:3]])
|
147 |
+
st.write(f"• Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
|
148 |
+
|
149 |
except Exception as e:
|
150 |
+
st.error(f"Error: {str(e)}")
|