Update app.py
Browse files
app.py
CHANGED
@@ -279,18 +279,44 @@ def main():
|
|
279 |
st.subheader("Emotional Trajectory")
|
280 |
emotional_trajectory = analyzer.analyze_emotional_trajectory(text)
|
281 |
|
282 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
trajectory_fig = go.Figure(data=go.Scatter(
|
284 |
-
|
|
|
285 |
mode='lines+markers',
|
286 |
-
name='Emotional Intensity'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
))
|
|
|
288 |
trajectory_fig.update_layout(
|
289 |
-
title='Speech Emotional
|
290 |
-
xaxis_title='Speech
|
291 |
-
yaxis_title='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
)
|
|
|
293 |
st.plotly_chart(trajectory_fig)
|
|
|
294 |
|
295 |
with tab3:
|
296 |
st.subheader("Linguistic Complexity")
|
@@ -379,17 +405,70 @@ def main():
|
|
379 |
with tab5:
|
380 |
st.subheader("Advanced NLP Analysis")
|
381 |
|
382 |
-
# Named Entities
|
383 |
-
st.write("###
|
384 |
named_entities = analyzer.detect_named_entities(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
entities_df = pd.DataFrame(named_entities)
|
386 |
-
|
|
|
387 |
|
388 |
-
#
|
389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
rhetorical_devices = analyzer.detect_rhetorical_devices(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
for device, count in rhetorical_devices.items():
|
392 |
-
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
if __name__ == "__main__":
|
395 |
main()
|
|
|
279 |
st.subheader("Emotional Trajectory")
|
280 |
emotional_trajectory = analyzer.analyze_emotional_trajectory(text)
|
281 |
|
282 |
+
# Scale values to a -1 to 1 range
|
283 |
+
scaled_trajectory = np.array(emotional_trajectory)
|
284 |
+
scaled_trajectory = np.clip(scaled_trajectory, -1, 1)
|
285 |
+
|
286 |
+
# Create segment labels for x-axis
|
287 |
+
num_segments = len(scaled_trajectory)
|
288 |
+
segment_labels = [f"Segment {i+1}" for i in range(num_segments)]
|
289 |
+
|
290 |
trajectory_fig = go.Figure(data=go.Scatter(
|
291 |
+
x=segment_labels,
|
292 |
+
y=scaled_trajectory,
|
293 |
mode='lines+markers',
|
294 |
+
name='Emotional Intensity',
|
295 |
+
line=dict(
|
296 |
+
color='#1f77b4',
|
297 |
+
width=3
|
298 |
+
),
|
299 |
+
marker=dict(
|
300 |
+
size=8,
|
301 |
+
color='#1f77b4'
|
302 |
+
)
|
303 |
))
|
304 |
+
|
305 |
trajectory_fig.update_layout(
|
306 |
+
title='Speech Emotional Flow',
|
307 |
+
xaxis_title='Speech Progression',
|
308 |
+
yaxis_title='Sentiment',
|
309 |
+
yaxis=dict(
|
310 |
+
ticktext=['Very Negative', 'Neutral', 'Very Positive'],
|
311 |
+
tickvals=[-1, 0, 1],
|
312 |
+
range=[-1, 1]
|
313 |
+
),
|
314 |
+
hovermode='x unified',
|
315 |
+
showlegend=False
|
316 |
)
|
317 |
+
|
318 |
st.plotly_chart(trajectory_fig)
|
319 |
+
|
320 |
|
321 |
with tab3:
|
322 |
st.subheader("Linguistic Complexity")
|
|
|
405 |
with tab5:
|
406 |
st.subheader("Advanced NLP Analysis")
|
407 |
|
408 |
+
# Named Entities with clear explanations
|
409 |
+
st.write("### Key People, Organizations, and Places")
|
410 |
named_entities = analyzer.detect_named_entities(text)
|
411 |
+
|
412 |
+
# Create intuitive mapping of entity types
|
413 |
+
entity_type_mapping = {
|
414 |
+
'PER': 'Person',
|
415 |
+
'ORG': 'Organization',
|
416 |
+
'LOC': 'Location',
|
417 |
+
'GPE': 'Country/City',
|
418 |
+
'MISC': 'Miscellaneous'
|
419 |
+
}
|
420 |
+
|
421 |
+
# Transform the entities dataframe
|
422 |
entities_df = pd.DataFrame(named_entities)
|
423 |
+
entities_df['entity_type'] = entities_df['entity_group'].map(entity_type_mapping)
|
424 |
+
entities_df['confidence'] = entities_df['score'].apply(lambda x: f"{x*100:.1f}%")
|
425 |
|
426 |
+
# Display enhanced table
|
427 |
+
display_df = entities_df[['word', 'entity_type', 'confidence']].rename(columns={
|
428 |
+
'word': 'Name/Term',
|
429 |
+
'entity_type': 'Type',
|
430 |
+
'confidence': 'Confidence Level'
|
431 |
+
})
|
432 |
+
|
433 |
+
st.dataframe(
|
434 |
+
display_df,
|
435 |
+
column_config={
|
436 |
+
"Name/Term": st.column_config.TextColumn(
|
437 |
+
help="The identified name or term from the text"
|
438 |
+
),
|
439 |
+
"Type": st.column_config.TextColumn(
|
440 |
+
help="Category of the identified term"
|
441 |
+
),
|
442 |
+
"Confidence Level": st.column_config.TextColumn(
|
443 |
+
help="How certain the AI is about this identification"
|
444 |
+
)
|
445 |
+
},
|
446 |
+
hide_index=True
|
447 |
+
)
|
448 |
+
|
449 |
+
# Enhanced Rhetorical Devices section
|
450 |
+
st.write("### Persuasive Language Techniques")
|
451 |
rhetorical_devices = analyzer.detect_rhetorical_devices(text)
|
452 |
+
|
453 |
+
# Create columns for better layout
|
454 |
+
col1, col2 = st.columns(2)
|
455 |
+
|
456 |
+
# Define friendly names and descriptions
|
457 |
+
device_explanations = {
|
458 |
+
'analogy': 'Comparisons (using "like" or "as")',
|
459 |
+
'repetition': 'Repeated phrases for emphasis',
|
460 |
+
'metaphor': 'Symbolic comparisons',
|
461 |
+
'hyperbole': 'Dramatic exaggerations',
|
462 |
+
'rhetorical_question': 'Questions asked for effect'
|
463 |
+
}
|
464 |
+
|
465 |
for device, count in rhetorical_devices.items():
|
466 |
+
with col1:
|
467 |
+
st.metric(
|
468 |
+
label=device_explanations[device],
|
469 |
+
value=f"{count} times"
|
470 |
+
)
|
471 |
+
|
472 |
|
473 |
if __name__ == "__main__":
|
474 |
main()
|