kambris commited on
Commit
5507d34
·
verified ·
1 Parent(s): ee46598

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -12
app.py CHANGED
@@ -279,18 +279,44 @@ def main():
279
  st.subheader("Emotional Trajectory")
280
  emotional_trajectory = analyzer.analyze_emotional_trajectory(text)
281
 
282
- # Plotly line chart
 
 
 
 
 
 
 
283
  trajectory_fig = go.Figure(data=go.Scatter(
284
- y=emotional_trajectory,
 
285
  mode='lines+markers',
286
- name='Emotional Intensity'
 
 
 
 
 
 
 
 
287
  ))
 
288
  trajectory_fig.update_layout(
289
- title='Speech Emotional Trajectory',
290
- xaxis_title='Speech Segments',
291
- yaxis_title='Emotional Intensity'
 
 
 
 
 
 
 
292
  )
 
293
  st.plotly_chart(trajectory_fig)
 
294
 
295
  with tab3:
296
  st.subheader("Linguistic Complexity")
@@ -379,17 +405,70 @@ def main():
379
  with tab5:
380
  st.subheader("Advanced NLP Analysis")
381
 
382
- # Named Entities
383
- st.write("### Named Entities")
384
  named_entities = analyzer.detect_named_entities(text)
 
 
 
 
 
 
 
 
 
 
 
385
  entities_df = pd.DataFrame(named_entities)
386
- st.dataframe(entities_df)
 
387
 
388
- # Rhetorical Devices
389
- st.write("### Rhetorical Devices")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390
  rhetorical_devices = analyzer.detect_rhetorical_devices(text)
 
 
 
 
 
 
 
 
 
 
 
 
 
391
  for device, count in rhetorical_devices.items():
392
- st.write(f"**{device.capitalize()}**: {count} instances")
 
 
 
 
 
393
 
394
  if __name__ == "__main__":
395
  main()
 
279
  st.subheader("Emotional Trajectory")
280
  emotional_trajectory = analyzer.analyze_emotional_trajectory(text)
281
 
282
+ # Scale values to a -1 to 1 range
283
+ scaled_trajectory = np.array(emotional_trajectory)
284
+ scaled_trajectory = np.clip(scaled_trajectory, -1, 1)
285
+
286
+ # Create segment labels for x-axis
287
+ num_segments = len(scaled_trajectory)
288
+ segment_labels = [f"Segment {i+1}" for i in range(num_segments)]
289
+
290
  trajectory_fig = go.Figure(data=go.Scatter(
291
+ x=segment_labels,
292
+ y=scaled_trajectory,
293
  mode='lines+markers',
294
+ name='Emotional Intensity',
295
+ line=dict(
296
+ color='#1f77b4',
297
+ width=3
298
+ ),
299
+ marker=dict(
300
+ size=8,
301
+ color='#1f77b4'
302
+ )
303
  ))
304
+
305
  trajectory_fig.update_layout(
306
+ title='Speech Emotional Flow',
307
+ xaxis_title='Speech Progression',
308
+ yaxis_title='Sentiment',
309
+ yaxis=dict(
310
+ ticktext=['Very Negative', 'Neutral', 'Very Positive'],
311
+ tickvals=[-1, 0, 1],
312
+ range=[-1, 1]
313
+ ),
314
+ hovermode='x unified',
315
+ showlegend=False
316
  )
317
+
318
  st.plotly_chart(trajectory_fig)
319
+
320
 
321
  with tab3:
322
  st.subheader("Linguistic Complexity")
 
405
  with tab5:
406
  st.subheader("Advanced NLP Analysis")
407
 
408
+ # Named Entities with clear explanations
409
+ st.write("### Key People, Organizations, and Places")
410
  named_entities = analyzer.detect_named_entities(text)
411
+
412
+ # Create intuitive mapping of entity types
413
+ entity_type_mapping = {
414
+ 'PER': 'Person',
415
+ 'ORG': 'Organization',
416
+ 'LOC': 'Location',
417
+ 'GPE': 'Country/City',
418
+ 'MISC': 'Miscellaneous'
419
+ }
420
+
421
+ # Transform the entities dataframe
422
  entities_df = pd.DataFrame(named_entities)
423
+ entities_df['entity_type'] = entities_df['entity_group'].map(entity_type_mapping)
424
+ entities_df['confidence'] = entities_df['score'].apply(lambda x: f"{x*100:.1f}%")
425
 
426
+ # Display enhanced table
427
+ display_df = entities_df[['word', 'entity_type', 'confidence']].rename(columns={
428
+ 'word': 'Name/Term',
429
+ 'entity_type': 'Type',
430
+ 'confidence': 'Confidence Level'
431
+ })
432
+
433
+ st.dataframe(
434
+ display_df,
435
+ column_config={
436
+ "Name/Term": st.column_config.TextColumn(
437
+ help="The identified name or term from the text"
438
+ ),
439
+ "Type": st.column_config.TextColumn(
440
+ help="Category of the identified term"
441
+ ),
442
+ "Confidence Level": st.column_config.TextColumn(
443
+ help="How certain the AI is about this identification"
444
+ )
445
+ },
446
+ hide_index=True
447
+ )
448
+
449
+ # Enhanced Rhetorical Devices section
450
+ st.write("### Persuasive Language Techniques")
451
  rhetorical_devices = analyzer.detect_rhetorical_devices(text)
452
+
453
+ # Create columns for better layout
454
+ col1, col2 = st.columns(2)
455
+
456
+ # Define friendly names and descriptions
457
+ device_explanations = {
458
+ 'analogy': 'Comparisons (using "like" or "as")',
459
+ 'repetition': 'Repeated phrases for emphasis',
460
+ 'metaphor': 'Symbolic comparisons',
461
+ 'hyperbole': 'Dramatic exaggerations',
462
+ 'rhetorical_question': 'Questions asked for effect'
463
+ }
464
+
465
  for device, count in rhetorical_devices.items():
466
+ with col1:
467
+ st.metric(
468
+ label=device_explanations[device],
469
+ value=f"{count} times"
470
+ )
471
+
472
 
473
  if __name__ == "__main__":
474
  main()