SoLProject / app.py
kambris's picture
Update app.py
b24f0de verified
raw
history blame
23.4 kB
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, pipeline
from sklearn.feature_extraction.text import CountVectorizer
from bertopic import BERTopic
import torch
import numpy as np
from collections import Counter
import os
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import pkg_resources
import folium
import country_converter as coco
current_dir = os.path.dirname(os.path.abspath(__file__))
font_path = os.path.join(current_dir, "ArabicR2013-J25x.ttf")
ARABIC_STOP_WORDS = {
ARABIC_STOP_WORDS = {
# First group
'ููŠ', 'ู…ู†', 'ุฅู„ู‰', 'ุนู„ู‰', 'ุนู„ูŠ', 'ุนู†', 'ู…ุน', 'ุฎู„ุงู„', 'ุญุชูŠ', 'ุญุชู‰', 'ุฅุฐุง',
# Middle group
'ุซู…', 'ุฃูˆ', 'ูˆ', 'ู„', 'ุจ', 'ูƒ', 'ู„ู„', 'ุงู„', 'ู‡ุฐุง',
'ู‡ุฐู‡', 'ุฐู„ูƒ', 'ุชู„ูƒ', 'ู‡ุคู„ุงุก', 'ู‡ู…', 'ู‡ู†', 'ู‡ูˆ', 'ู‡ูŠ', 'ู†ุญู†',
'ุงู†ุช', 'ุงู†ุชู…', 'ูƒุงู†', 'ูƒุงู†ุช', 'ูŠูƒูˆู†', 'ุชูƒูˆู†', 'ุงูŠ', 'ูƒู„',
'ุจุนุถ', 'ุบูŠุฑ', 'ุญูˆู„', 'ุนู†ุฏ', 'ู‚ุฏ', 'ู„ู‚ุฏ', 'ู„ู…', 'ู„ู†', 'ู„ูˆ',
'ู…ุง', 'ู…ุงุฐุง', 'ู…ุชู‰', 'ูƒูŠู', 'ุงูŠู†', 'ู„ู…ุงุฐุง', 'ุงู„ุฐูŠ', 'ุงู„ุชูŠ',
'ุงู„ุฐูŠู†', 'ุงู„ู„ุงุชูŠ', 'ุงู„ู„ูˆุงุชูŠ', 'ุงู„ุงู†', 'ุจูŠู†', 'ููˆู‚', 'ุชุญุช',
'ุงู…ุงู…', 'ุฎู„ู', 'ุญูŠู†', 'ู‚ุจู„', 'ุจุนุฏ', 'ุฃู†', 'ู„ู‡', 'ูƒู…ุง', 'ู„ู‡ุง',
'ู…ู†ุฐ', 'ู†ูุณ', 'ุญูŠุซ', 'ู‡ู†ุงูƒ', 'ุฌุฏุง', 'ุฐุงุช', 'ุถู…ู†', 'ุงู†ู‡', 'ู„ุฏู‰',
'ุนู„ูŠู‡', 'ู…ุซู„', 'ุฃู…ุง', 'ู„ุฏูŠ', 'ููŠู‡', 'ูƒู„ู…', 'ู„ูƒู†', 'ุงูŠุถุง', 'ู„ุงุฒู…',
'ูŠุฌุจ', 'ุตุงุฑ', 'ุตุงุฑุช', 'ุถุฏ', 'ูŠุง', 'ู„ุง', 'ุงู…ุง',
'ุจู‡ุง', 'ุงู†', 'ุจู‡', 'ุงู„ูŠ', 'ู„ู…ุง', 'ุงู†ุง', 'ุงู„ูŠูƒ', 'ู„ูŠ', 'ู„ูƒ', 'ู‚ู„ุช',
# Middle group prefixed with "ูˆ"
'ูˆุซู…', 'ูˆุฃูˆ', 'ูˆู„', 'ูˆุจ', 'ูˆูƒ', 'ูˆู„ู„', 'ูˆุงู„',
'ูˆู‡ุฐุง', 'ูˆู‡ุฐู‡', 'ูˆุฐู„ูƒ', 'ูˆุชู„ูƒ', 'ูˆู‡ุคู„ุงุก', 'ูˆู‡ู…', 'ูˆู‡ู†', 'ูˆู‡ูˆ', 'ูˆู‡ูŠ', 'ูˆู†ุญู†',
'ูˆุงู†ุช', 'ูˆุงู†ุชู…', 'ูˆูƒุงู†', 'ูˆูƒุงู†ุช', 'ูˆูŠูƒูˆู†', 'ูˆุชูƒูˆู†', 'ูˆุงูŠ', 'ูˆูƒู„',
'ูˆุจุนุถ', 'ูˆุบูŠุฑ', 'ูˆุญูˆู„', 'ูˆุนู†ุฏ', 'ูˆู‚ุฏ', 'ูˆู„ู‚ุฏ', 'ูˆู„ู…', 'ูˆู„ู†', 'ูˆู„ูˆ',
'ูˆู…ุง', 'ูˆู…ุงุฐุง', 'ูˆู…ุชู‰', 'ูˆูƒูŠู', 'ูˆุงูŠู†', 'ูˆู„ู…ุงุฐุง', 'ูˆุงู„ุฐูŠ', 'ูˆุงู„ุชูŠ',
'ูˆุงู„ุฐูŠู†', 'ูˆุงู„ู„ุงุชูŠ', 'ูˆุงู„ู„ูˆุงุชูŠ', 'ูˆุงู„ุงู†', 'ูˆุจูŠู†', 'ูˆููˆู‚', 'ูˆุชุญุช',
'ูˆุงู…ุงู…', 'ูˆุฎู„ู', 'ูˆุญูŠู†', 'ูˆู‚ุจู„', 'ูˆุจุนุฏ', 'ูˆุฃู†', 'ูˆู„ู‡', 'ูˆูƒู…ุง', 'ูˆู„ู‡ุง',
'ูˆู…ู†ุฐ', 'ูˆู†ูุณ', 'ูˆุญูŠุซ', 'ูˆู‡ู†ุงูƒ', 'ูˆุฌุฏุง', 'ูˆุฐุงุช', 'ูˆุถู…ู†', 'ูˆุงู†ู‡', 'ูˆู„ุฏู‰',
'ูˆุนู„ูŠู‡', 'ูˆู…ุซู„', 'ูˆุฃู…ุง', 'ูˆููŠู‡', 'ูˆูƒู„ู…', 'ูˆู„ูƒู†', 'ูˆุงูŠุถุง', 'ูˆู„ุงุฒู…',
'ูˆูŠุฌุจ', 'ูˆุตุงุฑ', 'ูˆุตุงุฑุช', 'ูˆุถุฏ', 'ูˆูŠุง', 'ูˆู„ุง', 'ูˆุงู…ุง',
'ูˆุจู‡ุง', 'ูˆุงู†', 'ูˆุจู‡', 'ูˆุงู„ูŠ', 'ูˆู„ู…ุง', 'ูˆุงู†ุง', 'ูˆุงู„ูŠูƒ', 'ูˆู„ูŠ', 'ูˆู„ูƒ', 'ูˆู‚ู„ุช',
# Last group
'ูˆููŠ', 'ูˆู…ู†', 'ูˆุนู„ู‰', 'ูˆุนู„ูŠ', 'ูˆุนู†', 'ูˆู…ุน', 'ูˆุญุชู‰', 'ูˆุฅุฐุง',
'ูˆู‡ุฐุง', 'ูˆู‡ุฐู‡', 'ูˆุฐู„ูƒ', 'ูˆุชู„ูƒ', 'ูˆู‡ูˆ', 'ูˆู‡ูŠ', 'ูˆู†ุญู†',
'ูˆูƒุงู†', 'ูˆูƒุงู†ุช', 'ูˆูƒู„', 'ูˆุจุนุถ', 'ูˆุญูˆู„', 'ูˆุนู†ุฏ', 'ูˆู‚ุฏ',
'ูˆู„ู‚ุฏ', 'ูˆู„ู…', 'ูˆู„ู†', 'ูˆู…ุง', 'ูˆูƒูŠู', 'ูˆุงูŠู†', 'ูˆุงู„ุฐูŠ',
'ูˆุจูŠู†', 'ูˆู‚ุจู„', 'ูˆุจุนุฏ', 'ูˆู„ู‡', 'ูˆู„ู‡ุง', 'ูˆู‡ู†ุงูƒ', 'ูˆุงู†ู‡',
'ูˆู„ุฏู‰', 'ูˆุนู„ูŠู‡', 'ูˆู…ุซู„',
# Arabic numbers
'ูˆุงุญุฏ', 'ุงุซู†ุงู†', 'ุซู„ุงุซุฉ', 'ุฃุฑุจุนุฉ', 'ุฎู…ุณุฉ', 'ุณุชุฉ', 'ุณุจุนุฉ',
'ุซู…ุงู†ูŠุฉ', 'ุชุณุนุฉ', 'ุนุดุฑุฉ',
# Arabic ordinals
'ุงู„ุฃูˆู„', 'ุงู„ุซุงู†ูŠ', 'ุงู„ุซุงู„ุซ', 'ุงู„ุฑุงุจุน', 'ุงู„ุฎุงู…ุณ', 'ุงู„ุณุงุฏุณ',
'ุงู„ุณุงุจุน', 'ุงู„ุซุงู…ู†', 'ุงู„ุชุงุณุน', 'ุงู„ุนุงุดุฑ'
}
COUNTRY_MAPPING = {
'ู…ุตุฑ': 'Egypt',
'ุงู„ุณุนูˆุฏูŠุฉ': 'Saudi Arabia',
'ุงู„ุฅู…ุงุฑุงุช': 'UAE',
'ุงู„ูƒูˆูŠุช': 'Kuwait',
'ุงู„ุนุฑุงู‚': 'Iraq',
'ุณูˆุฑูŠุง': 'Syria',
'ู„ุจู†ุงู†': 'Lebanon',
'ุงู„ุฃุฑุฏู†': 'Jordan',
'ูู„ุณุทูŠู†': 'Palestine',
'ุงู„ูŠู…ู†': 'Yemen',
'ุนู…ุงู†': 'Oman',
'ู‚ุทุฑ': 'Qatar',
'ุงู„ุจุญุฑูŠู†': 'Bahrain',
'ุงู„ุณูˆุฏุงู†': 'Sudan',
'ู„ูŠุจูŠุง': 'Libya',
'ุชูˆู†ุณ': 'Tunisia',
'ุงู„ุฌุฒุงุฆุฑ': 'Algeria',
'ุงู„ู…ุบุฑุจ': 'Morocco',
'ู…ูˆุฑูŠุชุงู†ูŠุง': 'Mauritania'
}
st.set_page_config(
page_title="Arabic Poem Analysis",
page_icon="๐Ÿ“š",
layout="wide"
)
@st.cache_resource
def load_models():
"""Load and cache the models to prevent reloading"""
tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
emotion_tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
emotion_classifier = pipeline(
"sentiment-analysis",
model=emotion_model,
tokenizer=emotion_tokenizer,
return_all_scores=True
)
return tokenizer, bert_model, emotion_classifier
def split_text(text, max_length=512):
"""Split text into chunks of maximum token length while preserving word boundaries."""
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_length = len(word.split())
if current_length + word_length > max_length:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = word_length
else:
current_chunk.append(word)
current_length += word_length
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def get_country_coordinates():
"""Returns dictionary of Arab country coordinates"""
return {
'Egypt': [26.8206, 30.8025],
'Saudi Arabia': [23.8859, 45.0792],
'UAE': [23.4241, 53.8478],
'Kuwait': [29.3117, 47.4818],
'Iraq': [33.2232, 43.6793],
'Syria': [34.8021, 38.9968],
'Lebanon': [33.8547, 35.8623],
'Jordan': [30.5852, 36.2384],
'Palestine': [31.9522, 35.2332],
'Yemen': [15.5527, 48.5164],
'Oman': [21.4735, 55.9754],
'Qatar': [25.3548, 51.1839],
'Bahrain': [26.0667, 50.5577],
'Sudan': [12.8628, 30.2176],
'Libya': [26.3351, 17.2283],
'Tunisia': [33.8869, 9.5375],
'Algeria': [28.0339, 1.6596],
'Morocco': [31.7917, -7.0926],
'Mauritania': [21.0079, -10.9408]
}
def create_topic_map(summaries):
coordinates = get_country_coordinates()
m = folium.Map(location=[27.0, 42.0], zoom_start=5)
# Color mapping for sentiments
sentiment_colors = {
'LABEL_1': 'green', # Positive
'LABEL_0': 'red', # Negative
'LABEL_2': 'blue' # Neutral
}
for summary in summaries:
country_en = COUNTRY_MAPPING.get(summary['country'])
if country_en and country_en in coordinates:
# Mapping emotions back to their original labels
REVERSE_EMOTION_LABELS = {
'Negative': 'LABEL_0',
'Positive': 'LABEL_1',
'Neutral': 'LABEL_2'
}
# Get dominant sentiment and map it back to original label
dominant_emotion = summary['top_emotions'][0]['emotion'] if summary['top_emotions'] else "Neutral"
dominant_label = REVERSE_EMOTION_LABELS.get(dominant_emotion, 'LABEL_2')
circle_color = sentiment_colors.get(dominant_label, 'gray')
# Create popup content
popup_content = f"""
<b>{country_en}</b><br>
<b>Sentiment Distribution:</b><br>
{'<br>'.join(f"โ€ข {e['emotion']}: {e['count']}" for e in summary['top_emotions'][:3])}<br>
<b>Top Topic:</b><br>
{summary['top_topics'][0]['topic'] if summary['top_topics'] else 'No topics'}<br>
Total Poems: {summary['total_poems']}
"""
# Add marker
folium.CircleMarker(
location=coordinates[country_en],
radius=10,
popup=folium.Popup(popup_content, max_width=300),
color=circle_color,
fill=True
).add_to(m)
# Add legend
legend_html = """
<div style="position: fixed; bottom: 50px; left: 50px; z-index: 1000; background-color: white; padding: 10px; border: 2px solid grey; border-radius: 5px">
<p><b>Sentiment:</b></p>
<p><span style="color: green;">โ—</span> Positive</p>
<p><span style="color: red;">โ—</span> Negative</p>
<p><span style="color: blue;">โ—</span> Neutral</p>
</div>
"""
m.get_root().html.add_child(folium.Element(legend_html))
return m
def create_arabic_wordcloud(text, title):
wordcloud = WordCloud(
width=1200,
height=600,
background_color='white',
font_path=font_path,
max_words=200,
stopwords=ARABIC_STOP_WORDS
).generate(text)
fig, ax = plt.subplots(figsize=(15, 8))
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
ax.set_title(title, fontsize=16, pad=20)
return fig
def clean_arabic_text(text):
"""Clean Arabic text by removing stop words and normalizing."""
words = text.split()
cleaned_words = [word for word in words if word not in ARABIC_STOP_WORDS and len(word) > 1]
return ' '.join(cleaned_words)
def classify_emotion(text, classifier):
"""Classify emotion for complete text with proper token handling."""
try:
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_tokens = len(classifier.tokenizer.encode(word))
if current_length + word_tokens > 512:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = word_tokens
else:
current_chunk.append(word)
current_length += word_tokens
if current_chunk:
chunks.append(' '.join(current_chunk))
if not chunks:
chunks = [text]
all_scores = []
for chunk in chunks:
try:
inputs = classifier.tokenizer(
chunk,
truncation=True,
max_length=512,
return_tensors="pt"
)
result = classifier(chunk, truncation=True, max_length=512)
scores = result[0]
all_scores.append(scores)
except Exception as chunk_error:
st.warning(f"Skipping chunk due to error: {str(chunk_error)}")
continue
if all_scores:
label_scores = {}
count = len(all_scores)
for scores in all_scores:
for score in scores:
label = score['label']
if label not in label_scores:
label_scores[label] = 0
label_scores[label] += score['score']
avg_scores = {label: score/count for label, score in label_scores.items()}
final_emotion = max(avg_scores.items(), key=lambda x: x[1])[0]
return final_emotion
return "LABEL_2"
except Exception as e:
st.warning(f"Error in emotion classification: {str(e)}")
return "LABEL_2"
def get_embedding_for_text(text, tokenizer, model):
"""Get embedding for complete text."""
chunks = split_text(text)
chunk_embeddings = []
for chunk in chunks:
try:
inputs = tokenizer(
chunk,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
chunk_embeddings.append(embedding[0])
except Exception as e:
st.warning(f"Error processing chunk: {str(e)}")
continue
if chunk_embeddings:
weights = np.array([len(chunk.split()) for chunk in chunks])
weights = weights / weights.sum()
weighted_embedding = np.average(chunk_embeddings, axis=0, weights=weights)
return weighted_embedding
return np.zeros(model.config.hidden_size)
def format_topics(topic_model, topic_counts):
"""Format topics for display."""
formatted_topics = []
for topic_num, count in topic_counts:
if topic_num == -1:
topic_label = "Miscellaneous"
else:
words = topic_model.get_topic(topic_num)
topic_label = " | ".join([word for word, _ in words[:5]])
formatted_topics.append({
'topic': topic_label,
'count': count
})
return formatted_topics
def format_emotions(emotion_counts):
"""Format emotions for display."""
EMOTION_LABELS = {
'LABEL_0': 'Negative',
'LABEL_1': 'Positive',
'LABEL_2': 'Neutral'
}
formatted_emotions = []
for label, count in emotion_counts:
emotion = EMOTION_LABELS.get(label, label)
formatted_emotions.append({
'emotion': emotion,
'count': count
})
return formatted_emotions
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=3):
"""Process the data and generate summaries with flexible topic configuration."""
summaries = []
topic_model_params = {
"language": "arabic",
"calculate_probabilities": True,
"min_topic_size": 3,
"n_gram_range": (1, 1),
"top_n_words": 15,
"verbose": True,
}
st.write(f"Total documents: {len(df)}")
st.write(f"Topic strategy: {topic_strategy}")
st.write(f"Min topic size: {min_topic_size}")
if topic_strategy == "Manual":
topic_model_params["nr_topics"] = n_topics
else:
topic_model_params["nr_topics"] = "auto"
topic_model = BERTopic(
embedding_model=bert_model,
**topic_model_params)
vectorizer = CountVectorizer(stop_words=list(ARABIC_STOP_WORDS),
min_df=1,
max_df=1.0)
topic_model.vectorizer_model = vectorizer
for country, group in df.groupby('country'):
progress_text = f"Processing poems for {country}..."
progress_bar = st.progress(0, text=progress_text)
texts = [clean_arabic_text(poem) for poem in group['poem'].dropna()]
all_emotions = []
embeddings = []
for i, text in enumerate(texts):
try:
embedding = get_embedding_for_text(text, bert_tokenizer, bert_model)
if embedding is not None and not np.isnan(embedding).any():
embeddings.append(embedding)
else:
st.warning(f"Invalid embedding generated for text {i+1} in {country}")
continue
except Exception as e:
st.warning(f"Error generating embedding for text {i+1} in {country}: {str(e)}")
continue
progress = (i + 1) / len(texts) * 0.4
progress_bar.progress(progress, text=f"Generated embeddings for {i+1}/{len(texts)} poems...")
if len(embeddings) != len(texts):
texts = texts[:len(embeddings)]
embeddings = np.array(embeddings)
for i, text in enumerate(texts):
emotion = classify_emotion(text, emotion_classifier)
all_emotions.append(emotion)
progress = 0.4 + ((i + 1) / len(texts) * 0.3)
progress_bar.progress(progress, text=f"Classified emotions for {i+1}/{len(texts)} poems...")
try:
if len(texts) < min_topic_size:
st.warning(f"Not enough documents for {country} to generate meaningful topics (minimum {min_topic_size} required)")
continue
topics, probs = topic_model.fit_transform(texts, embeddings)
topic_counts = Counter(topics)
top_topics = format_topics(topic_model, topic_counts.most_common(top_n))
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
summaries.append({
'country': country,
'total_poems': len(texts),
'top_topics': top_topics,
'top_emotions': top_emotions
})
progress_bar.progress(1.0, text="Processing complete!")
except Exception as e:
st.warning(f"Could not generate topics for {country}: {str(e)}")
continue
return summaries, topic_model
try:
bert_tokenizer, bert_model, emotion_classifier = load_models()
st.success("Models loaded successfully!")
except Exception as e:
st.error(f"Error loading models: {str(e)}")
st.stop()
# Main app interface
st.title("๐Ÿ“š Arabic Poem Analysis")
st.write("Upload a CSV or Excel file containing Arabic poems with columns `country` and `poem`.")
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
if uploaded_file is not None:
try:
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
required_columns = ['country', 'poem']
if not all(col in df.columns for col in required_columns):
st.error("File must contain 'country' and 'poem' columns.")
st.stop()
df['country'] = df['country'].str.strip()
df = df.dropna(subset=['country', 'poem'])
st.subheader("Topic Modeling Settings")
col1, col2 = st.columns(2)
with col1:
topic_strategy = st.radio(
"Topic Number Strategy",
["Auto", "Manual"],
help="Choose whether to let the model determine the optimal number of topics or set it manually"
)
if topic_strategy == "Manual":
n_documents = len(df)
max_topics = 500
min_topics = 5
default_topics = 20
n_topics = st.slider(
"Number of Topics",
min_value=min_topics,
max_value=max_topics,
value=default_topics,
help=f"Select the desired number of topics (max {max_topics} based on dataset size)"
)
st.info(f"""
๐Ÿ’ก For your dataset of {n_documents:,} documents:
- Available topic range: {min_topics}-{max_topics}
- Recommended range: {max_topics//10}-{max_topics//3} for optimal coherence
""")
with col2:
top_n = st.number_input(
"Number of top topics/emotions to display:",
min_value=1,
max_value=100,
value=10
)
if st.button("Process Data"):
with st.spinner("Processing your data..."):
summaries, topic_model = process_and_summarize(
df,
bert_tokenizer,
bert_model,
emotion_classifier,
top_n=top_n,
topic_strategy=topic_strategy,
n_topics=n_topics if topic_strategy == "Manual" else None,
min_topic_size=3
)
if summaries:
st.success("Analysis complete!")
tab1, tab2, tab3 = st.tabs(["Country Summaries", "Global Topics", "Topic Map"])
with tab1:
for summary in summaries:
with st.expander(f"๐Ÿ“ {summary['country']} ({summary['total_poems']} poems)"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Top Topics")
for topic in summary['top_topics']:
st.write(f"โ€ข {topic['topic']}: {topic['count']} poems")
with col2:
st.subheader("Emotions")
for emotion in summary['top_emotions']:
st.write(f"โ€ข {emotion['emotion']}: {emotion['count']} poems")
st.subheader("Word Cloud Visualization")
country_poems = df[df['country'] == summary['country']]['poem']
combined_text = ' '.join(country_poems)
wordcloud_fig = create_arabic_wordcloud(combined_text, f"Most Common Words in {summary['country']} Poems")
st.pyplot(wordcloud_fig)
with tab2:
st.subheader("Global Topic Distribution")
topic_info = topic_model.get_topic_info()
for _, row in topic_info.iterrows():
if row['Topic'] == -1:
topic_name = "Miscellaneous"
else:
words = topic_model.get_topic(row['Topic'])
topic_name = " | ".join([word for word, _ in words[:5]])
st.write(f"โ€ข Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
with tab3:
st.subheader("Topic and Sentiment Distribution Map")
topic_map = create_topic_map(summaries)
st.components.v1.html(topic_map._repr_html_(), height=600)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
else:
st.info("๐Ÿ‘† Upload a file to get started!")
st.write("### Expected File Format:")
example_df = pd.DataFrame({
'country': ['Egypt', 'Palestine'],
'poem': ['ู‚ุตูŠุฏุฉ ู…ุตุฑูŠุฉ', 'ู‚ุตูŠุฏุฉ ูู„ุณุทูŠู†ูŠุฉ']
})
st.dataframe(example_df)