Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline | |
from bertopic import BERTopic | |
import torch | |
# Initialize ARAT5 model and tokenizer for topic modeling | |
tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/araT5-base") | |
model = T5ForConditionalGeneration.from_pretrained("UBC-NLP/araT5-base") | |
# Emotion classification pipeline for Arabic (use an Arabic emotion classification model) | |
emotion_classifier = pipeline("text-classification", model="d0r13n/ara-bert-base-arabic-emotion") | |
# Function to get embeddings from ARAT5 for topic modeling | |
def generate_embeddings(texts): | |
# Tokenize the Arabic text for ARAT5 | |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
with torch.no_grad(): | |
outputs = model.encoder(input_ids=inputs['input_ids']) | |
return outputs.last_hidden_state.mean(dim=1).numpy() | |
# Function to process the CSV file and return emotion and topic model | |
def process_file(uploaded_file): | |
# Load CSV | |
df = pd.read_csv(uploaded_file) | |
# Display basic info about the CSV | |
st.write("CSV Loaded Successfully!") | |
st.write(f"Data Preview: {df.head()}") | |
# Preprocess the text: assuming the CSV has a 'text' column | |
texts = df['text'].dropna().tolist() # Modify this according to your column name | |
# Emotion Classification: Classify emotions for each text (Arabic) | |
emotions = [emotion_classifier(text)[0]['label'] for text in texts] | |
df['emotion'] = emotions | |
# Topic Modeling using ARAT5 embeddings | |
embeddings = generate_embeddings(texts) | |
topic_model = BERTopic() | |
topics, _ = topic_model.fit_transform(embeddings) | |
df['topic'] = topics | |
# Display the results | |
st.write("Emotions classified for each entry:") | |
st.write(df[['text', 'emotion', 'topic']]) | |
return df | |
# Streamlit App | |
st.title("Arabic Topic Modeling & Emotion Classification with ARAT5") | |
st.write("Upload a CSV file to perform topic modeling and emotion classification on Arabic text.") | |
# File upload widget | |
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"]) | |
if uploaded_file is not None: | |
# Process the file | |
result_df = process_file(uploaded_file) | |