SoLProject / app.py
kambris's picture
Update app.py
bc21f76 verified
raw
history blame
16.5 kB
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, pipeline
from bertopic import BERTopic
import torch
import numpy as np
from collections import Counter
import os
def main():
# Configure page
st.set_page_config(
page_title="Arabic Poem Analysis",
page_icon="๐Ÿ“š",
layout="wide"
)
# Add Arabic stop words
ARABIC_STOP_WORDS = {
'ููŠ', 'ู…ู†', 'ุฅู„ู‰', 'ุนู„ู‰', 'ุนู†', 'ู…ุน', 'ุฎู„ุงู„', 'ุญุชู‰', 'ุฅุฐุง', 'ุซู…',
'ุฃูˆ', 'ูˆ', 'ู', 'ู„', 'ุจ', 'ูƒ', 'ู„ู„', 'ุงู„', 'ู‡ุฐุง', 'ู‡ุฐู‡', 'ุฐู„ูƒ',
'ุชู„ูƒ', 'ู‡ุคู„ุงุก', 'ู‡ู…', 'ู‡ู†', 'ู‡ูˆ', 'ู‡ูŠ', 'ู†ุญู†', 'ุงู†ุช', 'ุงู†ุชู…',
'ูƒุงู†', 'ูƒุงู†ุช', 'ูŠูƒูˆู†', 'ุชูƒูˆู†', 'ุงูŠ', 'ูƒู„', 'ุจุนุถ', 'ุบูŠุฑ', 'ุญูˆู„',
'ุนู†ุฏ', 'ู‚ุฏ', 'ู„ู‚ุฏ', 'ู„ู…', 'ู„ู†', 'ู„ูˆ', 'ู…ุง', 'ู…ุงุฐุง', 'ู…ุชู‰', 'ูƒูŠู',
'ุงูŠู†', 'ู„ู…ุงุฐุง', 'ุงู„ุฐูŠ', 'ุงู„ุชูŠ', 'ุงู„ุฐูŠู†', 'ุงู„ู„ุงุชูŠ', 'ุงู„ู„ูˆุงุชูŠ',
'ุงู„ุงู†', 'ุจูŠู†', 'ููˆู‚', 'ุชุญุช', 'ุงู…ุงู…', 'ุฎู„ู', 'ุญูŠู†', 'ู‚ุจู„', 'ุจุนุฏ',
'ูˆ', 'ุฃู†', 'ููŠ', 'ูƒู„', 'ู„ู…', 'ู„ู†', 'ู„ู‡', 'ู…ู†', 'ู‡ูˆ', 'ู‡ูŠ', 'ู‚ูˆุฉ',
'ูƒู…ุง', 'ู„ู‡ุง', 'ู…ู†ุฐ', 'ูˆู‚ุฏ', 'ูˆู„ุง', 'ู†ูุณ', 'ูˆู„ู…', 'ุญูŠุซ', 'ู‡ู†ุงูƒ',
'ุฌุฏุง', 'ุฐุงุช', 'ุถู…ู†', 'ุงู†ู‡', 'ู„ุฏู‰', 'ุนู„ูŠู‡', 'ู…ุซู„', 'ูˆู„ู‡', 'ุนู†ุฏ',
'ุฃู…ุง', 'ู‡ุฐู‡', 'ูˆุฃู†', 'ูˆูƒู„', 'ูˆู‚ุงู„', 'ู„ุฏูŠ', 'ูˆูƒุงู†', 'ููŠู‡', 'ูˆู‡ูŠ',
'ูˆู‡ูˆ', 'ุชู„ูƒ', 'ูƒู„ู…', 'ู„ูƒู†', 'ูˆููŠ', 'ูˆู‚ู', 'ูˆู„ู‚ุฏ', 'ูˆู…ู†', 'ูˆู‡ุฐุง',
'ุงูˆู„', 'ุถู…ู†', 'ุงู†ู‡ุง', 'ุฌู…ูŠุน', 'ุงู„ุฐูŠ', 'ู‚ุจู„', 'ุจุนุฏ', 'ุญูˆู„', 'ุงูŠุถุง',
'ู„ุงุฒู…', 'ุญุงุฌุฉ', 'ุนู„ูŠ', 'ูŠุฌุจ', 'ุตุงุฑ', 'ุตุงุฑุช', 'ุชุญุช', 'ุถุฏ'
}
@st.cache_resource
def load_models():
"""Load and cache the models to prevent reloading"""
tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
emotion_tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
emotion_classifier = pipeline(
"sentiment-analysis",
model=emotion_model,
tokenizer=emotion_tokenizer,
return_all_scores=True
)
return tokenizer, bert_model, emotion_classifier
def split_text(text, max_length=512):
"""Split text into chunks of maximum token length while preserving word boundaries."""
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_length = len(word.split())
if current_length + word_length > max_length:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = word_length
else:
current_chunk.append(word)
current_length += word_length
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def clean_arabic_text(text):
"""Clean Arabic text by removing stop words and normalizing."""
words = text.split()
cleaned_words = [word for word in words if word not in ARABIC_STOP_WORDS and len(word) > 1]
return ' '.join(cleaned_words)
def classify_emotion(text, classifier):
"""Classify emotion for complete text with proper token handling."""
try:
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_tokens = len(classifier.tokenizer.encode(word))
if current_length + word_tokens > 512:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = word_tokens
else:
current_chunk.append(word)
current_length += word_tokens
if current_chunk:
chunks.append(' '.join(current_chunk))
if not chunks:
chunks = [text]
all_scores = []
for chunk in chunks:
try:
inputs = classifier.tokenizer(
chunk,
truncation=True,
max_length=512,
return_tensors="pt"
)
result = classifier(chunk, truncation=True, max_length=512)
scores = result[0]
all_scores.append(scores)
except Exception as chunk_error:
st.warning(f"Skipping chunk due to error: {str(chunk_error)}")
continue
if all_scores:
label_scores = {}
count = len(all_scores)
for scores in all_scores:
for score in scores:
label = score['label']
if label not in label_scores:
label_scores[label] = 0
label_scores[label] += score['score']
avg_scores = {label: score/count for label, score in label_scores.items()}
final_emotion = max(avg_scores.items(), key=lambda x: x[1])[0]
return final_emotion
return "LABEL_2"
except Exception as e:
st.warning(f"Error in emotion classification: {str(e)}")
return "LABEL_2"
def get_embedding_for_text(text, tokenizer, model):
"""Get embedding for complete text."""
chunks = split_text(text)
chunk_embeddings = []
for chunk in chunks:
try:
inputs = tokenizer(
chunk,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
chunk_embeddings.append(embedding[0])
except Exception as e:
st.warning(f"Error processing chunk: {str(e)}")
continue
if chunk_embeddings:
weights = np.array([len(chunk.split()) for chunk in chunks])
weights = weights / weights.sum()
weighted_embedding = np.average(chunk_embeddings, axis=0, weights=weights)
return weighted_embedding
return np.zeros(model.config.hidden_size)
def format_topics(topic_model, topic_counts):
"""Format topics for display."""
formatted_topics = []
for topic_num, count in topic_counts:
if topic_num == -1:
topic_label = "Miscellaneous"
else:
words = topic_model.get_topic(topic_num)
topic_label = " | ".join([word for word, _ in words[:5]])
formatted_topics.append({
'topic': topic_label,
'count': count
})
return formatted_topics
def format_emotions(emotion_counts):
"""Format emotions for display."""
EMOTION_LABELS = {
'LABEL_0': 'Negative',
'LABEL_1': 'Positive',
'LABEL_2': 'Neutral'
}
formatted_emotions = []
for label, count in emotion_counts:
emotion = EMOTION_LABELS.get(label, label)
formatted_emotions.append({
'emotion': emotion,
'count': count
})
return formatted_emotions
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=30):
"""Process the data and generate summaries with flexible topic configuration."""
summaries = []
topic_model_params = {
"language": "multilingual",
"calculate_probabilities": True,
"min_topic_size": min_topic_size,
"n_gram_range": (1, 3),
"top_n_words": 15,
"verbose": True
}
if topic_strategy == "Manual" and n_topics is not None:
topic_model_params["nr_topics"] = n_topics
else:
topic_model_params["nr_topics"] = "auto"
topic_model = BERTopic(**topic_model_params)
# Create vectorizer with stop words
vectorizer = CountVectorizer(stop_words=list(ARABIC_STOP_WORDS))
topic_model.vectorizer_model = vectorizer
for country, group in df.groupby('country'):
progress_text = f"Processing poems for {country}..."
progress_bar = st.progress(0, text=progress_text)
texts = [clean_arabic_text(poem) for poem in group['poem'].dropna()]
all_emotions = []
embeddings = []
for i, text in enumerate(texts):
embedding = get_embedding_for_text(text, bert_tokenizer, bert_model)
embeddings.append(embedding)
progress = (i + 1) / len(texts) * 0.4
progress_bar.progress(progress, text=f"Generated embeddings for {i+1}/{len(texts)} poems...")
embeddings = np.array(embeddings)
for i, text in enumerate(texts):
emotion = classify_emotion(text, emotion_classifier)
all_emotions.append(emotion)
progress = 0.4 + ((i + 1) / len(texts) * 0.3)
progress_bar.progress(progress, text=f"Classified emotions for {i+1}/{len(texts)} poems...")
try:
topics, probs = topic_model.fit_transform(texts, embeddings)
topic_counts = Counter(topics)
if -1 in topic_counts:
del topic_counts[-1]
top_topics = format_topics(topic_model, topic_counts.most_common(top_n))
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
summaries.append({
'country': country,
'total_poems': len(texts),
'top_topics': top_topics,
'top_emotions': top_emotions
})
progress_bar.progress(1.0, text="Processing complete!")
except Exception as e:
st.warning(f"Could not generate topics for {country}: {str(e)}")
continue
return summaries, topic_model
# Load models
try:
bert_tokenizer, bert_model, emotion_classifier = load_models()
st.success("Models loaded successfully!")
except Exception as e:
st.error(f"Error loading models: {str(e)}")
st.stop()
# Main app interface
st.title("๐Ÿ“š Arabic Poem Analysis")
st.write("Upload a CSV or Excel file containing Arabic poems with columns `country` and `poem`.")
# File upload
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
if uploaded_file is not None:
try:
# Read the file
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
# Validate columns
required_columns = ['country', 'poem']
if not all(col in df.columns for col in required_columns):
st.error("File must contain 'country' and 'poem' columns.")
st.stop()
# Clean data
df['country'] = df['country'].str.strip()
df = df.dropna(subset=['country', 'poem'])
# Add topic modeling controls
st.subheader("Topic Modeling Settings")
col1, col2 = st.columns(2)
with col1:
topic_strategy = st.radio(
"Topic Number Strategy",
["Auto", "Manual"],
help="Choose whether to let the model determine the optimal number of topics or set it manually"
)
if topic_strategy == "Manual":
# Calculate reasonable max topics based on dataset size
n_documents = len(df)
max_topics = max(2, min(50, n_documents // 20)) # Ensure minimum of 2
n_topics = st.slider(
"Number of Topics",
min_value=2,
max_value=max_topics,
value=min(20, max_topics),
help=f"Select the desired number of topics (max {max_topics} based on dataset size)"
)
st.info(f"""
๐Ÿ’ก For your dataset of {n_documents:,} documents:
- Minimum topics: 2
- Maximum topics: {max_topics}
- Recommended range: {max(2, max_topics//5)}-{max_topics//2}
""")
with col2:
top_n = st.number_input(
"Number of top topics/emotions to display:",
min_value=1,
max_value=100,
value=10
)
min_topic_size = st.slider(
"Minimum Topic Size",
min_value=10,
max_value=100,
value=30,
help="Minimum number of documents required to form a topic"
)
if st.button("Process Data"):
with st.spinner("Processing your data..."):
summaries, topic_model = process_and_summarize(
df,
bert_tokenizer,
bert_model,
emotion_classifier,
top_n=top_n,
topic_strategy=topic_strategy,
n_topics=n_topics if topic_strategy == "Manual" else None,
min_topic_size=min_topic_size
)
if summaries:
st.success("Analysis complete!")
# Display results in tabs
tab1, tab2 = st.tabs(["Country Summaries", "Global Topics"])
with tab1:
for summary in summaries:
with st.expander(f"๐Ÿ“ {summary['country']} ({summary['total_poems']} poems)"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Top Topics")
for topic in summary['top_topics']:
st.write(f"โ€ข {topic['topic']}: {topic['count']} poems")
with col2:
st.subheader("Emotions")
for emotion in summary['top_emotions']:
st.write(f"โ€ข {emotion['emotion']}: {emotion['count']} poems")
with tab2:
st.subheader("Global Topic Distribution")
topic_info = topic_model.get_topic_info()
for _, row in topic_info.iterrows():
if row['Topic'] == -1:
topic_name = "Miscellaneous"
else:
words = topic_model.get_topic(row['Topic'])
topic_name = " | ".join([word for word, _ in words[:5]])
st.write(f"โ€ข Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
except Exception as e:
st.error(f"Error processing file: {str(e)}")
else:
st.info("๐Ÿ‘† Upload a file to get started!")
# Example format
st.write("### Expected File Format:")
example_df = pd.DataFrame({
'country': ['Egypt', 'Palestine'],
'poem': ['ู‚ุตูŠุฏุฉ ู…ุตุฑูŠุฉ', 'ู‚ุตูŠุฏุฉ ูู„ุณุทูŠู†ูŠุฉ']
})
st.dataframe(example_df)
if __name__ == "__main__":
main()