Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,40 +21,52 @@ EMOTION_LABELS = {
|
|
| 21 |
'LABEL_2': 'Neutral'
|
| 22 |
}
|
| 23 |
|
| 24 |
-
def
|
| 25 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
tokens = bert_tokenizer.encode(text, add_special_tokens=False)
|
| 27 |
chunks = []
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
# Add special tokens
|
| 32 |
-
|
| 33 |
-
chunks.append(
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
return chunks
|
| 36 |
|
| 37 |
def get_embedding_for_text(text):
|
| 38 |
-
"""Get embedding for a
|
| 39 |
-
|
| 40 |
chunk_embeddings = []
|
| 41 |
|
| 42 |
-
for chunk in
|
| 43 |
-
#
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
with torch.no_grad():
|
| 48 |
-
outputs = bert_model(
|
| 49 |
|
| 50 |
-
# Get [CLS] token embedding
|
| 51 |
-
|
| 52 |
-
chunk_embeddings.append(
|
| 53 |
|
| 54 |
# Average embeddings from all chunks
|
| 55 |
if chunk_embeddings:
|
| 56 |
return np.mean(chunk_embeddings, axis=0)
|
| 57 |
-
return np.zeros(bert_model.config.hidden_size)
|
| 58 |
|
| 59 |
def generate_embeddings(texts):
|
| 60 |
"""Generate embeddings for a list of texts."""
|
|
@@ -66,22 +78,28 @@ def generate_embeddings(texts):
|
|
| 66 |
embeddings.append(embedding)
|
| 67 |
except Exception as e:
|
| 68 |
st.warning(f"Error processing text: {str(e)}")
|
| 69 |
-
# Add zero embedding as fallback
|
| 70 |
embeddings.append(np.zeros(bert_model.config.hidden_size))
|
| 71 |
|
| 72 |
return np.array(embeddings)
|
| 73 |
|
| 74 |
def classify_emotion(text):
|
| 75 |
-
"""
|
|
|
|
|
|
|
| 76 |
try:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
# Use first chunk for classification
|
| 82 |
-
chunk_text = bert_tokenizer.decode(chunks[0])
|
| 83 |
-
result = emotion_classifier(chunk_text)[0]
|
| 84 |
-
return result['label']
|
| 85 |
except Exception as e:
|
| 86 |
st.warning(f"Error in emotion classification: {str(e)}")
|
| 87 |
return "unknown"
|
|
@@ -93,9 +111,7 @@ def format_topics(topic_model, topic_counts):
|
|
| 93 |
if topic_num == -1:
|
| 94 |
topic_label = "Miscellaneous"
|
| 95 |
else:
|
| 96 |
-
# Get the top words for this topic
|
| 97 |
words = topic_model.get_topic(topic_num)
|
| 98 |
-
# Take the top 3 words to form a topic label
|
| 99 |
topic_label = " | ".join([word for word, _ in words[:3]])
|
| 100 |
|
| 101 |
formatted_topics.append({
|
|
@@ -136,10 +152,11 @@ def process_and_summarize(uploaded_file, top_n=50):
|
|
| 136 |
df['country'] = df['country'].str.strip()
|
| 137 |
df = df.dropna(subset=['country', 'poem'])
|
| 138 |
|
| 139 |
-
# Initialize BERTopic with specific parameters
|
| 140 |
topic_model = BERTopic(
|
| 141 |
language="arabic",
|
| 142 |
calculate_probabilities=True,
|
|
|
|
| 143 |
verbose=True
|
| 144 |
)
|
| 145 |
|
|
@@ -151,26 +168,23 @@ def process_and_summarize(uploaded_file, top_n=50):
|
|
| 151 |
texts = group['poem'].dropna().tolist()
|
| 152 |
batch_size = 10
|
| 153 |
all_emotions = []
|
| 154 |
-
all_embeddings = []
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
for i in range(0, len(texts), batch_size):
|
| 157 |
batch_texts = texts[i:i + batch_size]
|
| 158 |
-
|
| 159 |
-
st.info(f"Generating embeddings for batch {i//batch_size + 1}...")
|
| 160 |
-
batch_embeddings = generate_embeddings(batch_texts)
|
| 161 |
-
all_embeddings.extend(batch_embeddings)
|
| 162 |
-
|
| 163 |
st.info(f"Classifying emotions for batch {i//batch_size + 1}...")
|
| 164 |
batch_emotions = [classify_emotion(text) for text in batch_texts]
|
| 165 |
all_emotions.extend(batch_emotions)
|
| 166 |
|
| 167 |
try:
|
| 168 |
-
embeddings = np.array(all_embeddings)
|
| 169 |
-
|
| 170 |
st.info(f"Fitting topic model for {country}...")
|
| 171 |
topics, _ = topic_model.fit_transform(texts, embeddings)
|
| 172 |
|
| 173 |
-
# Format
|
| 174 |
top_topics = format_topics(topic_model, Counter(topics).most_common(top_n))
|
| 175 |
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
| 176 |
|
|
@@ -186,46 +200,4 @@ def process_and_summarize(uploaded_file, top_n=50):
|
|
| 186 |
|
| 187 |
return summaries, topic_model
|
| 188 |
|
| 189 |
-
# Streamlit
|
| 190 |
-
st.title("Arabic Poem Topic Modeling & Emotion Classification")
|
| 191 |
-
st.write("Upload a CSV or Excel file containing Arabic poems with columns `country` and `poem`.")
|
| 192 |
-
|
| 193 |
-
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
|
| 194 |
-
|
| 195 |
-
if uploaded_file is not None:
|
| 196 |
-
try:
|
| 197 |
-
top_n = st.number_input("Select the number of top topics/emotions to display:",
|
| 198 |
-
min_value=1, max_value=100, value=10)
|
| 199 |
-
|
| 200 |
-
summaries, topic_model = process_and_summarize(uploaded_file, top_n=top_n)
|
| 201 |
-
if summaries is not None:
|
| 202 |
-
st.success("Data successfully processed!")
|
| 203 |
-
|
| 204 |
-
# Display summary for each country
|
| 205 |
-
for summary in summaries:
|
| 206 |
-
st.write(f"### {summary['country']}")
|
| 207 |
-
st.write(f"Total Poems: {summary['total_poems']}")
|
| 208 |
-
|
| 209 |
-
st.write(f"\nTop {top_n} Topics:")
|
| 210 |
-
for topic in summary['top_topics']:
|
| 211 |
-
st.write(f"• {topic['topic']}: {topic['count']} poems")
|
| 212 |
-
|
| 213 |
-
st.write(f"\nTop {top_n} Emotions:")
|
| 214 |
-
for emotion in summary['top_emotions']:
|
| 215 |
-
st.write(f"• {emotion['emotion']}: {emotion['count']} poems")
|
| 216 |
-
|
| 217 |
-
st.write("---")
|
| 218 |
-
|
| 219 |
-
# Display overall topics in a more readable format
|
| 220 |
-
st.write("### Global Topic Information:")
|
| 221 |
-
topic_info = topic_model.get_topic_info()
|
| 222 |
-
for _, row in topic_info.iterrows():
|
| 223 |
-
if row['Topic'] == -1:
|
| 224 |
-
topic_name = "Miscellaneous"
|
| 225 |
-
else:
|
| 226 |
-
words = topic_model.get_topic(row['Topic'])
|
| 227 |
-
topic_name = " | ".join([word for word, _ in words[:3]])
|
| 228 |
-
st.write(f"• Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
|
| 229 |
-
|
| 230 |
-
except Exception as e:
|
| 231 |
-
st.error(f"Error: {str(e)}")
|
|
|
|
| 21 |
'LABEL_2': 'Neutral'
|
| 22 |
}
|
| 23 |
|
| 24 |
+
def chunk_long_text(text, max_length=512):
|
| 25 |
+
"""
|
| 26 |
+
Split text into chunks respecting AraBERT's token limit.
|
| 27 |
+
Returns both tokenized chunks and decoded text chunks.
|
| 28 |
+
"""
|
| 29 |
+
# Tokenize the entire text
|
| 30 |
tokens = bert_tokenizer.encode(text, add_special_tokens=False)
|
| 31 |
chunks = []
|
| 32 |
+
text_chunks = []
|
| 33 |
|
| 34 |
+
# Split into chunks of max_length-2 to account for [CLS] and [SEP]
|
| 35 |
+
for i in range(0, len(tokens), max_length-2):
|
| 36 |
+
chunk = tokens[i:i + max_length-2]
|
| 37 |
# Add special tokens
|
| 38 |
+
full_chunk = [bert_tokenizer.cls_token_id] + chunk + [bert_tokenizer.sep_token_id]
|
| 39 |
+
chunks.append(full_chunk)
|
| 40 |
+
# Decode the chunk back to text (without special tokens)
|
| 41 |
+
text_chunks.append(bert_tokenizer.decode(chunk))
|
| 42 |
|
| 43 |
+
return chunks, text_chunks
|
| 44 |
|
| 45 |
def get_embedding_for_text(text):
|
| 46 |
+
"""Get embedding for a text, handling long sequences by averaging chunk embeddings."""
|
| 47 |
+
_, text_chunks = chunk_long_text(text)
|
| 48 |
chunk_embeddings = []
|
| 49 |
|
| 50 |
+
for chunk in text_chunks:
|
| 51 |
+
# Encode chunk with padding and attention mask
|
| 52 |
+
inputs = bert_tokenizer(chunk,
|
| 53 |
+
return_tensors="pt",
|
| 54 |
+
padding=True,
|
| 55 |
+
truncation=True,
|
| 56 |
+
max_length=512)
|
| 57 |
+
inputs = {k: v.to(bert_model.device) for k, v in inputs.items()}
|
| 58 |
|
| 59 |
with torch.no_grad():
|
| 60 |
+
outputs = bert_model(**inputs)
|
| 61 |
|
| 62 |
+
# Get [CLS] token embedding
|
| 63 |
+
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
|
| 64 |
+
chunk_embeddings.append(embedding[0])
|
| 65 |
|
| 66 |
# Average embeddings from all chunks
|
| 67 |
if chunk_embeddings:
|
| 68 |
return np.mean(chunk_embeddings, axis=0)
|
| 69 |
+
return np.zeros(bert_model.config.hidden_size)
|
| 70 |
|
| 71 |
def generate_embeddings(texts):
|
| 72 |
"""Generate embeddings for a list of texts."""
|
|
|
|
| 78 |
embeddings.append(embedding)
|
| 79 |
except Exception as e:
|
| 80 |
st.warning(f"Error processing text: {str(e)}")
|
|
|
|
| 81 |
embeddings.append(np.zeros(bert_model.config.hidden_size))
|
| 82 |
|
| 83 |
return np.array(embeddings)
|
| 84 |
|
| 85 |
def classify_emotion(text):
|
| 86 |
+
"""
|
| 87 |
+
Classify emotion for a text, handling long sequences by voting among chunks.
|
| 88 |
+
"""
|
| 89 |
try:
|
| 90 |
+
_, text_chunks = chunk_long_text(text)
|
| 91 |
+
chunk_emotions = []
|
| 92 |
+
|
| 93 |
+
for chunk in text_chunks:
|
| 94 |
+
result = emotion_classifier(chunk, max_length=512, truncation=True)[0]
|
| 95 |
+
chunk_emotions.append(result['label'])
|
| 96 |
+
|
| 97 |
+
# Use majority voting for final emotion
|
| 98 |
+
if chunk_emotions:
|
| 99 |
+
final_emotion = Counter(chunk_emotions).most_common(1)[0][0]
|
| 100 |
+
return final_emotion
|
| 101 |
+
return "unknown"
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
except Exception as e:
|
| 104 |
st.warning(f"Error in emotion classification: {str(e)}")
|
| 105 |
return "unknown"
|
|
|
|
| 111 |
if topic_num == -1:
|
| 112 |
topic_label = "Miscellaneous"
|
| 113 |
else:
|
|
|
|
| 114 |
words = topic_model.get_topic(topic_num)
|
|
|
|
| 115 |
topic_label = " | ".join([word for word, _ in words[:3]])
|
| 116 |
|
| 117 |
formatted_topics.append({
|
|
|
|
| 152 |
df['country'] = df['country'].str.strip()
|
| 153 |
df = df.dropna(subset=['country', 'poem'])
|
| 154 |
|
| 155 |
+
# Initialize BERTopic with specific parameters for Arabic
|
| 156 |
topic_model = BERTopic(
|
| 157 |
language="arabic",
|
| 158 |
calculate_probabilities=True,
|
| 159 |
+
min_topic_size=5,
|
| 160 |
verbose=True
|
| 161 |
)
|
| 162 |
|
|
|
|
| 168 |
texts = group['poem'].dropna().tolist()
|
| 169 |
batch_size = 10
|
| 170 |
all_emotions = []
|
|
|
|
| 171 |
|
| 172 |
+
# Generate embeddings for all texts
|
| 173 |
+
st.info("Generating embeddings...")
|
| 174 |
+
embeddings = generate_embeddings(texts)
|
| 175 |
+
|
| 176 |
+
# Process emotions in batches
|
| 177 |
for i in range(0, len(texts), batch_size):
|
| 178 |
batch_texts = texts[i:i + batch_size]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
st.info(f"Classifying emotions for batch {i//batch_size + 1}...")
|
| 180 |
batch_emotions = [classify_emotion(text) for text in batch_texts]
|
| 181 |
all_emotions.extend(batch_emotions)
|
| 182 |
|
| 183 |
try:
|
|
|
|
|
|
|
| 184 |
st.info(f"Fitting topic model for {country}...")
|
| 185 |
topics, _ = topic_model.fit_transform(texts, embeddings)
|
| 186 |
|
| 187 |
+
# Format results
|
| 188 |
top_topics = format_topics(topic_model, Counter(topics).most_common(top_n))
|
| 189 |
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
| 190 |
|
|
|
|
| 200 |
|
| 201 |
return summaries, topic_model
|
| 202 |
|
| 203 |
+
# Streamlit interface remains the same...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|