Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,6 @@ import os
|
|
10 |
from wordcloud import WordCloud
|
11 |
import matplotlib.pyplot as plt
|
12 |
import pkg_resources
|
13 |
-
import folium
|
14 |
-
from folium.plugins import HeatMap
|
15 |
-
import country_converter as coco
|
16 |
-
from streamlit_folium import folium_static
|
17 |
|
18 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
19 |
font_path = os.path.join(current_dir, "ArabicR2013-J25x.ttf")
|
@@ -43,98 +39,19 @@ st.set_page_config(
|
|
43 |
|
44 |
@st.cache_resource
|
45 |
def load_models():
|
46 |
-
"""Load and cache the models"""
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
)
|
52 |
-
|
53 |
-
# + Added torchscript and low_cpu_mem_usage
|
54 |
-
bert_model = AutoModel.from_pretrained(
|
55 |
-
"aubmindlab/bert-base-arabertv2",
|
56 |
-
torchscript=True,
|
57 |
-
low_cpu_mem_usage=True
|
58 |
-
)
|
59 |
-
|
60 |
-
# + Added optimizations for emotion model
|
61 |
-
emotion_model = AutoModelForSequenceClassification.from_pretrained(
|
62 |
-
"CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment",
|
63 |
-
torchscript=True,
|
64 |
-
low_cpu_mem_usage=True
|
65 |
-
)
|
66 |
-
|
67 |
-
# ~ Changed pipeline configuration to use batching
|
68 |
emotion_classifier = pipeline(
|
69 |
"sentiment-analysis",
|
70 |
model=emotion_model,
|
71 |
-
tokenizer=
|
72 |
-
|
73 |
-
device=-1 # + Added to force CPU usage
|
74 |
)
|
75 |
-
|
76 |
return tokenizer, bert_model, emotion_classifier
|
77 |
|
78 |
-
# + Added new batch processing function
|
79 |
-
def process_texts_in_batches(texts, batch_size=32):
|
80 |
-
"""Process texts in batches for better CPU utilization"""
|
81 |
-
batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)]
|
82 |
-
results = []
|
83 |
-
|
84 |
-
for batch in batches:
|
85 |
-
batch_results = emotion_classifier(batch, truncation=True, max_length=512)
|
86 |
-
results.extend(batch_results)
|
87 |
-
|
88 |
-
return results
|
89 |
-
|
90 |
-
# + Added caching decorator for embeddings
|
91 |
-
@st.cache_data
|
92 |
-
def get_cached_embeddings(text, tokenizer, model):
|
93 |
-
"""Cache embeddings to avoid recomputation"""
|
94 |
-
return get_embedding_for_text(text, tokenizer, model)
|
95 |
-
|
96 |
-
def create_theme_map(summaries, topic_model):
|
97 |
-
"""Create an interactive map showing theme distributions across countries"""
|
98 |
-
try:
|
99 |
-
# Create a base map centered on the Arab world
|
100 |
-
m = folium.Map(location=[25, 45], zoom_start=4)
|
101 |
-
|
102 |
-
# Convert country names to coordinates
|
103 |
-
cc = coco.CountryConverter()
|
104 |
-
|
105 |
-
for summary in summaries:
|
106 |
-
try:
|
107 |
-
# Get country coordinates
|
108 |
-
country_iso = cc.convert(names=[summary['country']], to='ISO2')
|
109 |
-
country_data = cc.convert(names=[summary['country']], to='name_short')
|
110 |
-
|
111 |
-
# Create popup content with theme information
|
112 |
-
popup_content = f"""
|
113 |
-
<h4>{summary['country']}</h4>
|
114 |
-
<b>Top Themes:</b><br>
|
115 |
-
{'<br>'.join([f"• {topic['topic']}: {topic['count']}"
|
116 |
-
for topic in summary['top_topics'][:5]])}
|
117 |
-
"""
|
118 |
-
|
119 |
-
# Add marker for each country
|
120 |
-
folium.CircleMarker(
|
121 |
-
location=[cc.convert(country_iso, to='latitude')[0],
|
122 |
-
cc.convert(country_iso, to='longitude')[0]],
|
123 |
-
radius=20,
|
124 |
-
popup=folium.Popup(popup_content, max_width=300),
|
125 |
-
color='red',
|
126 |
-
fill=True,
|
127 |
-
fill_opacity=0.7
|
128 |
-
).add_to(m)
|
129 |
-
except Exception as e:
|
130 |
-
st.warning(f"Could not process {summary['country']}: {str(e)}")
|
131 |
-
continue
|
132 |
-
|
133 |
-
return m
|
134 |
-
except Exception as e:
|
135 |
-
st.error(f"Error creating map: {str(e)}")
|
136 |
-
return None
|
137 |
-
|
138 |
def split_text(text, max_length=512):
|
139 |
"""Split text into chunks of maximum token length while preserving word boundaries."""
|
140 |
words = text.split()
|
@@ -181,94 +98,99 @@ def clean_arabic_text(text):
|
|
181 |
return ' '.join(cleaned_words)
|
182 |
|
183 |
def classify_emotion(text, classifier):
|
184 |
-
"""Classify emotion for complete text with
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
return "LABEL_2"
|
212 |
-
|
213 |
-
# Process chunks with proper output handling
|
214 |
-
all_scores = []
|
215 |
-
for chunk in chunks:
|
216 |
-
# Direct classification with proper output structure
|
217 |
-
result = classifier(chunk, return_all_scores=True)[0]
|
218 |
-
all_scores.append(result)
|
219 |
-
|
220 |
-
# Calculate final emotion
|
221 |
-
label_scores = {}
|
222 |
-
count = len(all_scores)
|
223 |
-
|
224 |
-
for scores in all_scores:
|
225 |
-
for score_dict in scores:
|
226 |
-
label = score_dict['label']
|
227 |
-
if label not in label_scores:
|
228 |
-
label_scores[label] = 0
|
229 |
-
label_scores[label] += score_dict['score']
|
230 |
-
|
231 |
-
avg_scores = {label: score/count for label, score in label_scores.items()}
|
232 |
-
final_emotion = max(avg_scores.items(), key=lambda x: x[1])[0]
|
233 |
-
|
234 |
-
return final_emotion
|
235 |
|
|
|
|
|
|
|
|
|
236 |
def get_embedding_for_text(text, tokenizer, model):
|
237 |
"""Get embedding for complete text."""
|
238 |
-
|
239 |
-
tokens = tokenizer.tokenize(text)
|
240 |
-
|
241 |
-
# Process in chunks of exactly 510 tokens (512 - 2 for CLS and SEP)
|
242 |
-
chunk_size = 510
|
243 |
chunk_embeddings = []
|
244 |
|
245 |
-
for
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
# Get embedding
|
262 |
-
with torch.no_grad():
|
263 |
-
output = model(**encoded)
|
264 |
-
embedding = output[0][:, 0, :].cpu().numpy()
|
265 |
chunk_embeddings.append(embedding[0])
|
|
|
|
|
|
|
266 |
|
267 |
-
# Combine all chunk embeddings
|
268 |
if chunk_embeddings:
|
269 |
-
|
|
|
|
|
|
|
270 |
return np.zeros(model.config.hidden_size)
|
271 |
-
|
272 |
def format_topics(topic_model, topic_counts):
|
273 |
"""Format topics for display."""
|
274 |
formatted_topics = []
|
@@ -301,26 +223,31 @@ def format_emotions(emotion_counts):
|
|
301 |
'count': count
|
302 |
})
|
303 |
return formatted_emotions
|
304 |
-
|
305 |
-
def get_optimized_topic_model(bert_model):
|
306 |
-
"""Configure BERTopic for better CPU performance"""
|
307 |
-
return BERTopic(
|
308 |
-
embedding_model=bert_model,
|
309 |
-
language="arabic",
|
310 |
-
calculate_probabilities=False,
|
311 |
-
verbose=False,
|
312 |
-
n_gram_range=(1, 1),
|
313 |
-
min_topic_size=5,
|
314 |
-
nr_topics="auto",
|
315 |
-
low_memory=True
|
316 |
-
)
|
317 |
-
|
318 |
|
319 |
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=3):
|
320 |
"""Process the data and generate summaries with flexible topic configuration."""
|
321 |
summaries = []
|
322 |
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
vectorizer = CountVectorizer(stop_words=list(ARABIC_STOP_WORDS),
|
326 |
min_df=1,
|
@@ -334,58 +261,58 @@ def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, to
|
|
334 |
texts = [clean_arabic_text(poem) for poem in group['poem'].dropna()]
|
335 |
all_emotions = []
|
336 |
|
337 |
-
# Get embeddings while keeping all content
|
338 |
embeddings = []
|
339 |
for i, text in enumerate(texts):
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
# Get embedding for this chunk
|
351 |
-
chunk_embedding = get_embedding_for_text(chunk_text, bert_tokenizer, bert_model)
|
352 |
-
chunk_embeddings.append(chunk_embedding)
|
353 |
-
|
354 |
-
# Combine embeddings for full poem representation
|
355 |
-
full_embedding = np.mean(chunk_embeddings, axis=0) if chunk_embeddings else np.zeros(bert_model.config.hidden_size)
|
356 |
-
embeddings.append(full_embedding)
|
357 |
-
|
358 |
progress = (i + 1) / len(texts) * 0.4
|
359 |
progress_bar.progress(progress, text=f"Generated embeddings for {i+1}/{len(texts)} poems...")
|
360 |
-
|
|
|
|
|
361 |
embeddings = np.array(embeddings)
|
362 |
|
363 |
-
# Process emotions with tuple output handling
|
364 |
for i, text in enumerate(texts):
|
365 |
-
|
366 |
-
emotion = result[0] # Access first element of tuple
|
367 |
all_emotions.append(emotion)
|
368 |
progress = 0.4 + ((i + 1) / len(texts) * 0.3)
|
369 |
progress_bar.progress(progress, text=f"Classified emotions for {i+1}/{len(texts)} poems...")
|
370 |
-
|
371 |
-
|
372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
continue
|
374 |
-
|
375 |
-
topics, _ = topic_model.fit_transform(texts, embeddings)
|
376 |
-
topic_counts = Counter(topics)
|
377 |
-
|
378 |
-
top_topics = format_topics(topic_model, topic_counts.most_common(top_n))
|
379 |
-
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
380 |
-
|
381 |
-
summaries.append({
|
382 |
-
'country': country,
|
383 |
-
'total_poems': len(texts),
|
384 |
-
'top_topics': top_topics,
|
385 |
-
'top_emotions': top_emotions
|
386 |
-
})
|
387 |
-
progress_bar.progress(1.0, text="Processing complete!")
|
388 |
-
|
389 |
return summaries, topic_model
|
390 |
|
391 |
try:
|
@@ -470,7 +397,7 @@ if uploaded_file is not None:
|
|
470 |
if summaries:
|
471 |
st.success("Analysis complete!")
|
472 |
|
473 |
-
tab1, tab2
|
474 |
|
475 |
with tab1:
|
476 |
for summary in summaries:
|
@@ -503,10 +430,7 @@ if uploaded_file is not None:
|
|
503 |
words = topic_model.get_topic(row['Topic'])
|
504 |
topic_name = " | ".join([word for word, _ in words[:5]])
|
505 |
st.write(f"• Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
|
506 |
-
|
507 |
-
st.subheader("Thematic Distribution Map")
|
508 |
-
theme_map = create_theme_map(summaries, topic_model)
|
509 |
-
folium_static(theme_map)
|
510 |
except Exception as e:
|
511 |
st.error(f"Error processing file: {str(e)}")
|
512 |
|
@@ -520,3 +444,4 @@ else:
|
|
520 |
})
|
521 |
st.dataframe(example_df)
|
522 |
|
|
|
|
10 |
from wordcloud import WordCloud
|
11 |
import matplotlib.pyplot as plt
|
12 |
import pkg_resources
|
|
|
|
|
|
|
|
|
13 |
|
14 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
15 |
font_path = os.path.join(current_dir, "ArabicR2013-J25x.ttf")
|
|
|
39 |
|
40 |
@st.cache_resource
|
41 |
def load_models():
|
42 |
+
"""Load and cache the models to prevent reloading"""
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
44 |
+
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
|
45 |
+
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
46 |
+
emotion_tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
emotion_classifier = pipeline(
|
48 |
"sentiment-analysis",
|
49 |
model=emotion_model,
|
50 |
+
tokenizer=emotion_tokenizer,
|
51 |
+
return_all_scores=True
|
|
|
52 |
)
|
|
|
53 |
return tokenizer, bert_model, emotion_classifier
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def split_text(text, max_length=512):
|
56 |
"""Split text into chunks of maximum token length while preserving word boundaries."""
|
57 |
words = text.split()
|
|
|
98 |
return ' '.join(cleaned_words)
|
99 |
|
100 |
def classify_emotion(text, classifier):
|
101 |
+
"""Classify emotion for complete text with proper token handling."""
|
102 |
+
try:
|
103 |
+
words = text.split()
|
104 |
+
chunks = []
|
105 |
+
current_chunk = []
|
106 |
+
current_length = 0
|
107 |
+
|
108 |
+
for word in words:
|
109 |
+
word_tokens = len(classifier.tokenizer.encode(word))
|
110 |
+
if current_length + word_tokens > 512:
|
111 |
+
if current_chunk:
|
112 |
+
chunks.append(' '.join(current_chunk))
|
113 |
+
current_chunk = [word]
|
114 |
+
current_length = word_tokens
|
115 |
+
else:
|
116 |
+
current_chunk.append(word)
|
117 |
+
current_length += word_tokens
|
118 |
+
|
119 |
+
if current_chunk:
|
120 |
+
chunks.append(' '.join(current_chunk))
|
121 |
+
|
122 |
+
if not chunks:
|
123 |
+
chunks = [text]
|
124 |
+
|
125 |
+
all_scores = []
|
126 |
+
for chunk in chunks:
|
127 |
+
try:
|
128 |
+
inputs = classifier.tokenizer(
|
129 |
+
chunk,
|
130 |
+
truncation=True,
|
131 |
+
max_length=512,
|
132 |
+
return_tensors="pt"
|
133 |
+
)
|
134 |
+
result = classifier(chunk, truncation=True, max_length=512)
|
135 |
+
scores = result[0]
|
136 |
+
all_scores.append(scores)
|
137 |
+
except Exception as chunk_error:
|
138 |
+
st.warning(f"Skipping chunk due to error: {str(chunk_error)}")
|
139 |
+
continue
|
140 |
+
|
141 |
+
if all_scores:
|
142 |
+
label_scores = {}
|
143 |
+
count = len(all_scores)
|
144 |
+
|
145 |
+
for scores in all_scores:
|
146 |
+
for score in scores:
|
147 |
+
label = score['label']
|
148 |
+
if label not in label_scores:
|
149 |
+
label_scores[label] = 0
|
150 |
+
label_scores[label] += score['score']
|
151 |
+
|
152 |
+
avg_scores = {label: score/count for label, score in label_scores.items()}
|
153 |
+
final_emotion = max(avg_scores.items(), key=lambda x: x[1])[0]
|
154 |
+
return final_emotion
|
155 |
+
|
156 |
return "LABEL_2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
except Exception as e:
|
159 |
+
st.warning(f"Error in emotion classification: {str(e)}")
|
160 |
+
return "LABEL_2"
|
161 |
+
|
162 |
def get_embedding_for_text(text, tokenizer, model):
|
163 |
"""Get embedding for complete text."""
|
164 |
+
chunks = split_text(text)
|
|
|
|
|
|
|
|
|
165 |
chunk_embeddings = []
|
166 |
|
167 |
+
for chunk in chunks:
|
168 |
+
try:
|
169 |
+
inputs = tokenizer(
|
170 |
+
chunk,
|
171 |
+
return_tensors="pt",
|
172 |
+
padding=True,
|
173 |
+
truncation=True,
|
174 |
+
max_length=512
|
175 |
+
)
|
176 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
177 |
+
|
178 |
+
with torch.no_grad():
|
179 |
+
outputs = model(**inputs)
|
180 |
+
|
181 |
+
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
182 |
chunk_embeddings.append(embedding[0])
|
183 |
+
except Exception as e:
|
184 |
+
st.warning(f"Error processing chunk: {str(e)}")
|
185 |
+
continue
|
186 |
|
|
|
187 |
if chunk_embeddings:
|
188 |
+
weights = np.array([len(chunk.split()) for chunk in chunks])
|
189 |
+
weights = weights / weights.sum()
|
190 |
+
weighted_embedding = np.average(chunk_embeddings, axis=0, weights=weights)
|
191 |
+
return weighted_embedding
|
192 |
return np.zeros(model.config.hidden_size)
|
193 |
+
|
194 |
def format_topics(topic_model, topic_counts):
|
195 |
"""Format topics for display."""
|
196 |
formatted_topics = []
|
|
|
223 |
'count': count
|
224 |
})
|
225 |
return formatted_emotions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=3):
|
228 |
"""Process the data and generate summaries with flexible topic configuration."""
|
229 |
summaries = []
|
230 |
|
231 |
+
topic_model_params = {
|
232 |
+
"language": "arabic",
|
233 |
+
"calculate_probabilities": True,
|
234 |
+
"min_topic_size": 3,
|
235 |
+
"n_gram_range": (1, 1),
|
236 |
+
"top_n_words": 15,
|
237 |
+
"verbose": True,
|
238 |
+
}
|
239 |
+
st.write(f"Total documents: {len(df)}")
|
240 |
+
st.write(f"Topic strategy: {topic_strategy}")
|
241 |
+
st.write(f"Min topic size: {min_topic_size}")
|
242 |
+
|
243 |
+
if topic_strategy == "Manual":
|
244 |
+
topic_model_params["nr_topics"] = n_topics
|
245 |
+
else:
|
246 |
+
topic_model_params["nr_topics"] = "auto"
|
247 |
+
|
248 |
+
topic_model = BERTopic(
|
249 |
+
embedding_model=bert_model,
|
250 |
+
**topic_model_params)
|
251 |
|
252 |
vectorizer = CountVectorizer(stop_words=list(ARABIC_STOP_WORDS),
|
253 |
min_df=1,
|
|
|
261 |
texts = [clean_arabic_text(poem) for poem in group['poem'].dropna()]
|
262 |
all_emotions = []
|
263 |
|
|
|
264 |
embeddings = []
|
265 |
for i, text in enumerate(texts):
|
266 |
+
try:
|
267 |
+
embedding = get_embedding_for_text(text, bert_tokenizer, bert_model)
|
268 |
+
if embedding is not None and not np.isnan(embedding).any():
|
269 |
+
embeddings.append(embedding)
|
270 |
+
else:
|
271 |
+
st.warning(f"Invalid embedding generated for text {i+1} in {country}")
|
272 |
+
continue
|
273 |
+
except Exception as e:
|
274 |
+
st.warning(f"Error generating embedding for text {i+1} in {country}: {str(e)}")
|
275 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
progress = (i + 1) / len(texts) * 0.4
|
277 |
progress_bar.progress(progress, text=f"Generated embeddings for {i+1}/{len(texts)} poems...")
|
278 |
+
|
279 |
+
if len(embeddings) != len(texts):
|
280 |
+
texts = texts[:len(embeddings)]
|
281 |
embeddings = np.array(embeddings)
|
282 |
|
|
|
283 |
for i, text in enumerate(texts):
|
284 |
+
emotion = classify_emotion(text, emotion_classifier)
|
|
|
285 |
all_emotions.append(emotion)
|
286 |
progress = 0.4 + ((i + 1) / len(texts) * 0.3)
|
287 |
progress_bar.progress(progress, text=f"Classified emotions for {i+1}/{len(texts)} poems...")
|
288 |
+
|
289 |
+
try:
|
290 |
+
|
291 |
+
if len(texts) < min_topic_size:
|
292 |
+
st.warning(f"Not enough documents for {country} to generate meaningful topics (minimum {min_topic_size} required)")
|
293 |
+
continue
|
294 |
+
|
295 |
+
|
296 |
+
topics, probs = topic_model.fit_transform(texts, embeddings)
|
297 |
+
|
298 |
+
|
299 |
+
topic_counts = Counter(topics)
|
300 |
+
|
301 |
+
top_topics = format_topics(topic_model, topic_counts.most_common(top_n))
|
302 |
+
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
303 |
+
|
304 |
+
summaries.append({
|
305 |
+
'country': country,
|
306 |
+
'total_poems': len(texts),
|
307 |
+
'top_topics': top_topics,
|
308 |
+
'top_emotions': top_emotions
|
309 |
+
})
|
310 |
+
progress_bar.progress(1.0, text="Processing complete!")
|
311 |
+
|
312 |
+
except Exception as e:
|
313 |
+
st.warning(f"Could not generate topics for {country}: {str(e)}")
|
314 |
continue
|
315 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
return summaries, topic_model
|
317 |
|
318 |
try:
|
|
|
397 |
if summaries:
|
398 |
st.success("Analysis complete!")
|
399 |
|
400 |
+
tab1, tab2 = st.tabs(["Country Summaries", "Global Topics"])
|
401 |
|
402 |
with tab1:
|
403 |
for summary in summaries:
|
|
|
430 |
words = topic_model.get_topic(row['Topic'])
|
431 |
topic_name = " | ".join([word for word, _ in words[:5]])
|
432 |
st.write(f"• Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
|
433 |
+
|
|
|
|
|
|
|
434 |
except Exception as e:
|
435 |
st.error(f"Error processing file: {str(e)}")
|
436 |
|
|
|
444 |
})
|
445 |
st.dataframe(example_df)
|
446 |
|
447 |
+
|