Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,24 @@ import numpy as np
|
|
7 |
from collections import Counter
|
8 |
import os
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Configure page
|
11 |
st.set_page_config(
|
12 |
page_title="Arabic Poem Analysis",
|
@@ -17,7 +35,6 @@ st.set_page_config(
|
|
17 |
@st.cache_resource
|
18 |
def load_models():
|
19 |
"""Load and cache the models to prevent reloading"""
|
20 |
-
# Use CAMeL-Lab's tokenizer for consistency with the emotion model
|
21 |
tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
22 |
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
|
23 |
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
@@ -40,7 +57,7 @@ def split_text(text, max_length=512):
|
|
40 |
for word in words:
|
41 |
word_length = len(word.split())
|
42 |
if current_length + word_length > max_length:
|
43 |
-
if current_chunk:
|
44 |
chunks.append(' '.join(current_chunk))
|
45 |
current_chunk = [word]
|
46 |
current_length = word_length
|
@@ -48,25 +65,26 @@ def split_text(text, max_length=512):
|
|
48 |
current_chunk.append(word)
|
49 |
current_length += word_length
|
50 |
|
51 |
-
if current_chunk:
|
52 |
chunks.append(' '.join(current_chunk))
|
53 |
|
54 |
return chunks
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def classify_emotion(text, classifier):
|
59 |
"""Classify emotion for complete text with proper token handling."""
|
60 |
try:
|
61 |
-
# Split text into manageable chunks
|
62 |
words = text.split()
|
63 |
chunks = []
|
64 |
current_chunk = []
|
65 |
current_length = 0
|
66 |
|
67 |
-
# Create chunks that respect the 512 token limit
|
68 |
for word in words:
|
69 |
-
# Add word length plus 1 for space
|
70 |
word_tokens = len(classifier.tokenizer.encode(word))
|
71 |
if current_length + word_tokens > 512:
|
72 |
if current_chunk:
|
@@ -80,14 +98,12 @@ def classify_emotion(text, classifier):
|
|
80 |
if current_chunk:
|
81 |
chunks.append(' '.join(current_chunk))
|
82 |
|
83 |
-
# If no chunks were created, use the original text with truncation
|
84 |
if not chunks:
|
85 |
chunks = [text]
|
86 |
|
87 |
all_scores = []
|
88 |
for chunk in chunks:
|
89 |
try:
|
90 |
-
# Ensure proper truncation
|
91 |
inputs = classifier.tokenizer(
|
92 |
chunk,
|
93 |
truncation=True,
|
@@ -101,13 +117,10 @@ def classify_emotion(text, classifier):
|
|
101 |
st.warning(f"Skipping chunk due to error: {str(chunk_error)}")
|
102 |
continue
|
103 |
|
104 |
-
# Average scores across all chunks
|
105 |
if all_scores:
|
106 |
-
# Create a dictionary to store summed scores for each label
|
107 |
label_scores = {}
|
108 |
count = len(all_scores)
|
109 |
|
110 |
-
# Sum up scores for each label
|
111 |
for scores in all_scores:
|
112 |
for score in scores:
|
113 |
label = score['label']
|
@@ -115,19 +128,15 @@ def classify_emotion(text, classifier):
|
|
115 |
label_scores[label] = 0
|
116 |
label_scores[label] += score['score']
|
117 |
|
118 |
-
# Calculate averages
|
119 |
avg_scores = {label: score/count for label, score in label_scores.items()}
|
120 |
-
|
121 |
-
# Get the label with highest average score
|
122 |
final_emotion = max(avg_scores.items(), key=lambda x: x[1])[0]
|
123 |
return final_emotion
|
124 |
|
125 |
-
return "LABEL_2"
|
126 |
|
127 |
except Exception as e:
|
128 |
st.warning(f"Error in emotion classification: {str(e)}")
|
129 |
-
return "LABEL_2"
|
130 |
-
|
131 |
|
132 |
def get_embedding_for_text(text, tokenizer, model):
|
133 |
"""Get embedding for complete text."""
|
@@ -155,7 +164,6 @@ def get_embedding_for_text(text, tokenizer, model):
|
|
155 |
continue
|
156 |
|
157 |
if chunk_embeddings:
|
158 |
-
# Use weighted average based on chunk length
|
159 |
weights = np.array([len(chunk.split()) for chunk in chunks])
|
160 |
weights = weights / weights.sum()
|
161 |
weighted_embedding = np.average(chunk_embeddings, axis=0, weights=weights)
|
@@ -170,7 +178,7 @@ def format_topics(topic_model, topic_counts):
|
|
170 |
topic_label = "Miscellaneous"
|
171 |
else:
|
172 |
words = topic_model.get_topic(topic_num)
|
173 |
-
topic_label = " | ".join([word for word, _ in words[:5]])
|
174 |
|
175 |
formatted_topics.append({
|
176 |
'topic': topic_label,
|
@@ -180,7 +188,6 @@ def format_topics(topic_model, topic_counts):
|
|
180 |
|
181 |
def format_emotions(emotion_counts):
|
182 |
"""Format emotions for display."""
|
183 |
-
# Define emotion labels mapping
|
184 |
EMOTION_LABELS = {
|
185 |
'LABEL_0': 'Negative',
|
186 |
'LABEL_1': 'Positive',
|
@@ -196,29 +203,35 @@ def format_emotions(emotion_counts):
|
|
196 |
})
|
197 |
return formatted_emotions
|
198 |
|
199 |
-
def process_and_summarize(df, top_n=50):
|
200 |
-
"""Process the data and generate summaries."""
|
201 |
summaries = []
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
-
# Group by country
|
214 |
for country, group in df.groupby('country'):
|
215 |
progress_text = f"Processing poems for {country}..."
|
216 |
progress_bar = st.progress(0, text=progress_text)
|
217 |
|
218 |
-
texts = group['poem'].dropna()
|
219 |
all_emotions = []
|
220 |
|
221 |
-
# Generate embeddings with progress tracking
|
222 |
embeddings = []
|
223 |
for i, text in enumerate(texts):
|
224 |
embedding = get_embedding_for_text(text, bert_tokenizer, bert_model)
|
@@ -228,7 +241,6 @@ def process_and_summarize(df, top_n=50):
|
|
228 |
|
229 |
embeddings = np.array(embeddings)
|
230 |
|
231 |
-
# Process emotions with progress tracking
|
232 |
for i, text in enumerate(texts):
|
233 |
emotion = classify_emotion(text, emotion_classifier)
|
234 |
all_emotions.append(emotion)
|
@@ -236,11 +248,13 @@ def process_and_summarize(df, top_n=50):
|
|
236 |
progress_bar.progress(progress, text=f"Classified emotions for {i+1}/{len(texts)} poems...")
|
237 |
|
238 |
try:
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
241 |
|
242 |
-
|
243 |
-
top_topics = format_topics(topic_model, Counter(topics).most_common(top_n))
|
244 |
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
245 |
|
246 |
summaries.append({
|
@@ -290,14 +304,61 @@ if uploaded_file is not None:
|
|
290 |
df['country'] = df['country'].str.strip()
|
291 |
df = df.dropna(subset=['country', 'poem'])
|
292 |
|
293 |
-
#
|
294 |
-
|
295 |
-
|
296 |
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
if summaries:
|
302 |
st.success("Analysis complete!")
|
303 |
|
@@ -341,4 +402,5 @@ else:
|
|
341 |
'country': ['Egypt', 'Palestine'],
|
342 |
'poem': ['قصيدة مصرية', 'قصيدة فلسطينية ']
|
343 |
})
|
344 |
-
st.dataframe(example_df)
|
|
|
|
7 |
from collections import Counter
|
8 |
import os
|
9 |
|
10 |
+
# Add Arabic stop words
|
11 |
+
ARABIC_STOP_WORDS = {
|
12 |
+
'في', 'من', 'إلى', 'على', 'عن', 'مع', 'خلال', 'حتى', 'إذا', 'ثم',
|
13 |
+
'أو', 'و', 'ف', 'ل', 'ب', 'ك', 'لل', 'ال', 'هذا', 'هذه', 'ذلك',
|
14 |
+
'تلك', 'هؤلاء', 'هم', 'هن', 'هو', 'هي', 'نحن', 'انت', 'انتم',
|
15 |
+
'كان', 'كانت', 'يكون', 'تكون', 'اي', 'كل', 'بعض', 'غير', 'حول',
|
16 |
+
'عند', 'قد', 'لقد', 'لم', 'لن', 'لو', 'ما', 'ماذا', 'متى', 'كيف',
|
17 |
+
'اين', 'لماذا', 'الذي', 'التي', 'الذين', 'اللاتي', 'اللواتي',
|
18 |
+
'الان', 'بين', 'فوق', 'تحت', 'امام', 'خلف', 'حين', 'قبل', 'بعد',
|
19 |
+
'و', 'أن', 'في', 'كل', 'لم', 'لن', 'له', 'من', 'هو', 'هي', 'قوة',
|
20 |
+
'كما', 'لها', 'منذ', 'وقد', 'ولا', 'نفس', 'ولم', 'حيث', 'هناك',
|
21 |
+
'جدا', 'ذات', 'ضمن', 'انه', 'لدى', 'عليه', 'مثل', 'وله', 'عند',
|
22 |
+
'أما', 'هذه', 'وأن', 'وكل', 'وقال', 'لدي', 'وكان', 'فيه', 'وهي',
|
23 |
+
'وهو', 'تلك', 'كلم', 'لكن', 'وفي', 'وقف', 'ولقد', 'ومن', 'وهذا',
|
24 |
+
'اول', 'ضمن', 'انها', 'جميع', 'الذي', 'قبل', 'بعد', 'حول', 'ايضا',
|
25 |
+
'لازم', 'حاجة', 'علي', 'يجب', 'صار', 'صارت', 'تحت', 'ضد'
|
26 |
+
}
|
27 |
+
|
28 |
# Configure page
|
29 |
st.set_page_config(
|
30 |
page_title="Arabic Poem Analysis",
|
|
|
35 |
@st.cache_resource
|
36 |
def load_models():
|
37 |
"""Load and cache the models to prevent reloading"""
|
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
39 |
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
|
40 |
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
|
|
57 |
for word in words:
|
58 |
word_length = len(word.split())
|
59 |
if current_length + word_length > max_length:
|
60 |
+
if current_chunk:
|
61 |
chunks.append(' '.join(current_chunk))
|
62 |
current_chunk = [word]
|
63 |
current_length = word_length
|
|
|
65 |
current_chunk.append(word)
|
66 |
current_length += word_length
|
67 |
|
68 |
+
if current_chunk:
|
69 |
chunks.append(' '.join(current_chunk))
|
70 |
|
71 |
return chunks
|
72 |
|
73 |
+
def clean_arabic_text(text):
|
74 |
+
"""Clean Arabic text by removing stop words and normalizing."""
|
75 |
+
words = text.split()
|
76 |
+
cleaned_words = [word for word in words if word not in ARABIC_STOP_WORDS and len(word) > 1]
|
77 |
+
return ' '.join(cleaned_words)
|
78 |
|
79 |
def classify_emotion(text, classifier):
|
80 |
"""Classify emotion for complete text with proper token handling."""
|
81 |
try:
|
|
|
82 |
words = text.split()
|
83 |
chunks = []
|
84 |
current_chunk = []
|
85 |
current_length = 0
|
86 |
|
|
|
87 |
for word in words:
|
|
|
88 |
word_tokens = len(classifier.tokenizer.encode(word))
|
89 |
if current_length + word_tokens > 512:
|
90 |
if current_chunk:
|
|
|
98 |
if current_chunk:
|
99 |
chunks.append(' '.join(current_chunk))
|
100 |
|
|
|
101 |
if not chunks:
|
102 |
chunks = [text]
|
103 |
|
104 |
all_scores = []
|
105 |
for chunk in chunks:
|
106 |
try:
|
|
|
107 |
inputs = classifier.tokenizer(
|
108 |
chunk,
|
109 |
truncation=True,
|
|
|
117 |
st.warning(f"Skipping chunk due to error: {str(chunk_error)}")
|
118 |
continue
|
119 |
|
|
|
120 |
if all_scores:
|
|
|
121 |
label_scores = {}
|
122 |
count = len(all_scores)
|
123 |
|
|
|
124 |
for scores in all_scores:
|
125 |
for score in scores:
|
126 |
label = score['label']
|
|
|
128 |
label_scores[label] = 0
|
129 |
label_scores[label] += score['score']
|
130 |
|
|
|
131 |
avg_scores = {label: score/count for label, score in label_scores.items()}
|
|
|
|
|
132 |
final_emotion = max(avg_scores.items(), key=lambda x: x[1])[0]
|
133 |
return final_emotion
|
134 |
|
135 |
+
return "LABEL_2"
|
136 |
|
137 |
except Exception as e:
|
138 |
st.warning(f"Error in emotion classification: {str(e)}")
|
139 |
+
return "LABEL_2"
|
|
|
140 |
|
141 |
def get_embedding_for_text(text, tokenizer, model):
|
142 |
"""Get embedding for complete text."""
|
|
|
164 |
continue
|
165 |
|
166 |
if chunk_embeddings:
|
|
|
167 |
weights = np.array([len(chunk.split()) for chunk in chunks])
|
168 |
weights = weights / weights.sum()
|
169 |
weighted_embedding = np.average(chunk_embeddings, axis=0, weights=weights)
|
|
|
178 |
topic_label = "Miscellaneous"
|
179 |
else:
|
180 |
words = topic_model.get_topic(topic_num)
|
181 |
+
topic_label = " | ".join([word for word, _ in words[:5]])
|
182 |
|
183 |
formatted_topics.append({
|
184 |
'topic': topic_label,
|
|
|
188 |
|
189 |
def format_emotions(emotion_counts):
|
190 |
"""Format emotions for display."""
|
|
|
191 |
EMOTION_LABELS = {
|
192 |
'LABEL_0': 'Negative',
|
193 |
'LABEL_1': 'Positive',
|
|
|
203 |
})
|
204 |
return formatted_emotions
|
205 |
|
206 |
+
def process_and_summarize(df, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=30):
|
207 |
+
"""Process the data and generate summaries with flexible topic configuration."""
|
208 |
summaries = []
|
209 |
|
210 |
+
topic_model_params = {
|
211 |
+
"language": "multilingual",
|
212 |
+
"calculate_probabilities": True,
|
213 |
+
"min_topic_size": min_topic_size,
|
214 |
+
"n_gram_range": (1, 3),
|
215 |
+
"top_n_words": 15,
|
216 |
+
"verbose": True,
|
217 |
+
"diversity": 0.5,
|
218 |
+
"stop_words": ARABIC_STOP_WORDS
|
219 |
+
}
|
220 |
+
|
221 |
+
if topic_strategy == "Manual" and n_topics is not None:
|
222 |
+
topic_model_params["nr_topics"] = n_topics
|
223 |
+
else:
|
224 |
+
topic_model_params["nr_topics"] = "auto"
|
225 |
+
|
226 |
+
topic_model = BERTopic(**topic_model_params)
|
227 |
|
|
|
228 |
for country, group in df.groupby('country'):
|
229 |
progress_text = f"Processing poems for {country}..."
|
230 |
progress_bar = st.progress(0, text=progress_text)
|
231 |
|
232 |
+
texts = [clean_arabic_text(poem) for poem in group['poem'].dropna()]
|
233 |
all_emotions = []
|
234 |
|
|
|
235 |
embeddings = []
|
236 |
for i, text in enumerate(texts):
|
237 |
embedding = get_embedding_for_text(text, bert_tokenizer, bert_model)
|
|
|
241 |
|
242 |
embeddings = np.array(embeddings)
|
243 |
|
|
|
244 |
for i, text in enumerate(texts):
|
245 |
emotion = classify_emotion(text, emotion_classifier)
|
246 |
all_emotions.append(emotion)
|
|
|
248 |
progress_bar.progress(progress, text=f"Classified emotions for {i+1}/{len(texts)} poems...")
|
249 |
|
250 |
try:
|
251 |
+
topics, probs = topic_model.fit_transform(texts, embeddings)
|
252 |
+
|
253 |
+
topic_counts = Counter(topics)
|
254 |
+
if -1 in topic_counts:
|
255 |
+
del topic_counts[-1]
|
256 |
|
257 |
+
top_topics = format_topics(topic_model, topic_counts.most_common(top_n))
|
|
|
258 |
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
259 |
|
260 |
summaries.append({
|
|
|
304 |
df['country'] = df['country'].str.strip()
|
305 |
df = df.dropna(subset=['country', 'poem'])
|
306 |
|
307 |
+
# Add topic modeling controls
|
308 |
+
st.subheader("Topic Modeling Settings")
|
309 |
+
col1, col2 = st.columns(2)
|
310 |
|
311 |
+
with col1:
|
312 |
+
topic_strategy = st.radio(
|
313 |
+
"Topic Number Strategy",
|
314 |
+
["Auto", "Manual"],
|
315 |
+
help="Choose whether to let the model determine the optimal number of topics or set it manually"
|
316 |
+
)
|
317 |
+
|
318 |
+
if topic_strategy == "Manual":
|
319 |
+
# Calculate reasonable max topics based on dataset size
|
320 |
+
n_documents = len(df)
|
321 |
+
if n_documents < 1000:
|
322 |
+
max_topics = min(50, n_documents // 20)
|
323 |
+
else:
|
324 |
+
max_topics = min(500, int(np.log10(n_documents) * 100))
|
325 |
|
326 |
+
n_topics = st.slider(
|
327 |
+
"Number of Topics",
|
328 |
+
min_value=2,
|
329 |
+
max_value=max_topics,
|
330 |
+
value=min(20, max_topics),
|
331 |
+
help=f"Select the desired number of topics (max {max_topics} based on dataset size)"
|
332 |
+
)
|
333 |
+
|
334 |
+
st.info(f"""
|
335 |
+
💡 For your dataset of {n_documents:,} documents:
|
336 |
+
- Minimum topics: 2
|
337 |
+
- Maximum topics: {max_topics}
|
338 |
+
- Recommended range: {max(2, max_topics//5)}-{max_topics//2}
|
339 |
+
""")
|
340 |
+
|
341 |
+
with col2:
|
342 |
+
top_n = st.number_input(
|
343 |
+
"Number of top topics/emotions to display:",
|
344 |
+
min_value=1,
|
345 |
+
max_value=100,
|
346 |
+
value=10
|
347 |
+
)
|
348 |
+
|
349 |
+
min_topic_size = st.slider(
|
350 |
+
"Minimum Topic Size",
|
351 |
+
min_value=10,
|
352 |
+
max_value=100,
|
353 |
+
value=30,
|
354 |
+
help="Minimum number of documents required to form a topic"
|
355 |
+
)
|
356 |
+
|
357 |
+
if st.button("Process Data"):
|
358 |
+
with st.spinner("Processing your data..."):
|
359 |
+
summaries, topic_model = process_and_summarize(df, top_n=top_n, topic_strategy=topic_strategy, n_topics=n_topics, min_topic_size=min_topic_size)
|
360 |
+
|
361 |
+
|
362 |
if summaries:
|
363 |
st.success("Analysis complete!")
|
364 |
|
|
|
402 |
'country': ['Egypt', 'Palestine'],
|
403 |
'poem': ['قصيدة مصرية', 'قصيدة فلسطينية ']
|
404 |
})
|
405 |
+
st.dataframe(example_df)
|
406 |
+
|