Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -237,6 +237,30 @@ def format_emotions(emotion_counts):
|
|
237 |
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=3):
|
238 |
summaries = []
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
# Create a placeholder for the progress bar
|
241 |
progress_placeholder = st.empty()
|
242 |
progress_bar = progress_placeholder.progress(0)
|
@@ -286,8 +310,30 @@ def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, to
|
|
286 |
except Exception as e:
|
287 |
st.warning(f"Error classifying emotion for poem {i+1} in {country}: {str(e)}")
|
288 |
continue
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
# Clear progress for next country
|
293 |
progress_placeholder.empty()
|
|
|
237 |
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=3):
|
238 |
summaries = []
|
239 |
|
240 |
+
topic_model_params = {
|
241 |
+
"language": "arabic",
|
242 |
+
"calculate_probabilities": True,
|
243 |
+
"min_topic_size": min_topic_size,
|
244 |
+
"n_gram_range": (1, 1),
|
245 |
+
"top_n_words": 15,
|
246 |
+
"verbose": True,
|
247 |
+
}
|
248 |
+
|
249 |
+
if topic_strategy == "Manual":
|
250 |
+
topic_model_params["nr_topics"] = n_topics
|
251 |
+
else:
|
252 |
+
topic_model_params["nr_topics"] = "auto"
|
253 |
+
|
254 |
+
topic_model = BERTopic(
|
255 |
+
embedding_model=bert_model,
|
256 |
+
**topic_model_params
|
257 |
+
)
|
258 |
+
|
259 |
+
vectorizer = CountVectorizer(stop_words=list(ARABIC_STOP_WORDS),
|
260 |
+
min_df=1,
|
261 |
+
max_df=1.0)
|
262 |
+
topic_model.vectorizer_model = vectorizer
|
263 |
+
|
264 |
# Create a placeholder for the progress bar
|
265 |
progress_placeholder = st.empty()
|
266 |
progress_bar = progress_placeholder.progress(0)
|
|
|
310 |
except Exception as e:
|
311 |
st.warning(f"Error classifying emotion for poem {i+1} in {country}: {str(e)}")
|
312 |
continue
|
313 |
+
|
314 |
+
try:
|
315 |
+
if len(texts) < min_topic_size:
|
316 |
+
st.warning(f"Not enough documents for {country} to generate meaningful topics (minimum {min_topic_size} required)")
|
317 |
+
continue
|
318 |
+
|
319 |
+
topics, probs = topic_model.fit_transform(texts, embeddings)
|
320 |
+
|
321 |
+
topic_counts = Counter(topics)
|
322 |
+
|
323 |
+
top_topics = format_topics(topic_model, topic_counts.most_common(top_n))
|
324 |
+
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
325 |
+
|
326 |
+
summaries.append({
|
327 |
+
'country': country,
|
328 |
+
'total_poems': len(texts),
|
329 |
+
'top_topics': top_topics,
|
330 |
+
'top_emotions': top_emotions
|
331 |
+
})
|
332 |
+
progress_bar.progress(1.0, text="Processing complete!")
|
333 |
+
|
334 |
+
except Exception as e:
|
335 |
+
st.warning(f"Could not generate topics for {country}: {str(e)}")
|
336 |
+
continue
|
337 |
|
338 |
# Clear progress for next country
|
339 |
progress_placeholder.empty()
|