Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,9 @@ def generate_embeddings(texts):
|
|
16 |
# Tokenize the Arabic text for ARAT5
|
17 |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
18 |
with torch.no_grad():
|
|
|
19 |
outputs = model.encoder(input_ids=inputs['input_ids'])
|
|
|
20 |
return outputs.last_hidden_state.mean(dim=1).numpy()
|
21 |
|
22 |
# Function to process the CSV file and return emotion and topic model
|
@@ -28,10 +30,14 @@ def process_file(uploaded_file):
|
|
28 |
st.write("CSV Loaded Successfully!")
|
29 |
st.write(f"Data Preview: {df.head()}")
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
emotions = [emotion_classifier(text)[0]['label'] for text in texts]
|
36 |
df['emotion'] = emotions
|
37 |
|
@@ -41,19 +47,61 @@ def process_file(uploaded_file):
|
|
41 |
topics, _ = topic_model.fit_transform(embeddings)
|
42 |
df['topic'] = topics
|
43 |
|
44 |
-
#
|
45 |
-
st.write("Emotions classified for each entry:")
|
46 |
-
st.write(df[['text', 'emotion', 'topic']])
|
47 |
-
|
48 |
return df
|
49 |
|
50 |
# Streamlit App
|
51 |
-
st.title("Arabic Topic Modeling & Emotion Classification with ARAT5")
|
52 |
-
st.write("Upload a CSV file to perform topic modeling and emotion classification on Arabic
|
53 |
|
54 |
# File upload widget
|
55 |
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|
56 |
|
|
|
57 |
if uploaded_file is not None:
|
58 |
-
# Process the file
|
59 |
result_df = process_file(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Tokenize the Arabic text for ARAT5
|
17 |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
18 |
with torch.no_grad():
|
19 |
+
# Use ARAT5 to generate embeddings
|
20 |
outputs = model.encoder(input_ids=inputs['input_ids'])
|
21 |
+
# Extract the embeddings (mean of hidden states for simplicity)
|
22 |
return outputs.last_hidden_state.mean(dim=1).numpy()
|
23 |
|
24 |
# Function to process the CSV file and return emotion and topic model
|
|
|
30 |
st.write("CSV Loaded Successfully!")
|
31 |
st.write(f"Data Preview: {df.head()}")
|
32 |
|
33 |
+
# Ensure 'date' column is in datetime format and extract the year
|
34 |
+
df['date'] = pd.to_datetime(df['date'], errors='coerce') # Replace 'date' with your actual column name
|
35 |
+
df['year'] = df['date'].dt.year
|
36 |
+
|
37 |
+
# Modify this to use the 'poem' column that contains the Arabic poems
|
38 |
+
texts = df['poem'].dropna().tolist() # Replace 'poem' with your actual column name
|
39 |
+
|
40 |
+
# Emotion Classification: Classify emotions for each poem (Arabic)
|
41 |
emotions = [emotion_classifier(text)[0]['label'] for text in texts]
|
42 |
df['emotion'] = emotions
|
43 |
|
|
|
47 |
topics, _ = topic_model.fit_transform(embeddings)
|
48 |
df['topic'] = topics
|
49 |
|
50 |
+
# Return the processed dataframe
|
|
|
|
|
|
|
51 |
return df
|
52 |
|
53 |
# Streamlit App
|
54 |
+
st.title("Arabic Poem Topic Modeling & Emotion Classification with ARAT5")
|
55 |
+
st.write("Upload a CSV file to perform topic modeling and emotion classification on Arabic poems.")
|
56 |
|
57 |
# File upload widget
|
58 |
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|
59 |
|
60 |
+
# If file is uploaded, process and display results
|
61 |
if uploaded_file is not None:
|
|
|
62 |
result_df = process_file(uploaded_file)
|
63 |
+
|
64 |
+
# Show date selection widgets
|
65 |
+
st.write("### Filter by Date Range")
|
66 |
+
start_date = st.date_input("Start Date", value=pd.to_datetime(result_df['date'].min()))
|
67 |
+
end_date = st.date_input("End Date", value=pd.to_datetime(result_df['date'].max()))
|
68 |
+
|
69 |
+
# Filter data based on selected date range
|
70 |
+
filtered_df = result_df[(result_df['date'] >= start_date) & (result_df['date'] <= end_date)]
|
71 |
+
|
72 |
+
# Display filtered data
|
73 |
+
st.write(f"Filtered Data (Poems from {start_date} to {end_date}):")
|
74 |
+
st.write(filtered_df[['poet_name', 'era', 'poem', 'emotion', 'topic', 'date']])
|
75 |
+
|
76 |
+
# Create buttons to show different summaries
|
77 |
+
summary_type = st.radio("Select Summary Type:",
|
78 |
+
("Emotion and Topic Summary by Date Range",
|
79 |
+
"Global Emotion and Topic Summary"))
|
80 |
+
|
81 |
+
# Display the selected summary
|
82 |
+
if summary_type == "Emotion and Topic Summary by Date Range":
|
83 |
+
st.write("Emotion and Topic Summary for Selected Date Range:")
|
84 |
+
|
85 |
+
# Emotion Distribution in Date Range
|
86 |
+
emotion_counts = filtered_df['emotion'].value_counts()
|
87 |
+
st.write("Emotion Counts in Date Range:")
|
88 |
+
st.write(emotion_counts)
|
89 |
+
|
90 |
+
# Topic Distribution in Date Range
|
91 |
+
topic_counts = filtered_df['topic'].value_counts()
|
92 |
+
st.write("Topic Counts in Date Range:")
|
93 |
+
st.write(topic_counts)
|
94 |
+
|
95 |
+
# Visualize emotion distribution over the selected range (optional)
|
96 |
+
st.bar_chart(emotion_counts, use_container_width=True)
|
97 |
+
|
98 |
+
# Visualize topic distribution over the selected range (optional)
|
99 |
+
st.bar_chart(topic_counts, use_container_width=True)
|
100 |
+
|
101 |
+
elif summary_type == "Global Emotion and Topic Summary":
|
102 |
+
st.write("Global Emotion and Topic Summary (All Poems):")
|
103 |
+
global_emotion_count = result_df['emotion'].value_counts().to_dict()
|
104 |
+
global_topic_count = result_df['topic'].value_counts().to_dict()
|
105 |
+
|
106 |
+
st.write(f"Emotion Distribution: {global_emotion_count}")
|
107 |
+
st.write(f"Topic Distribution: {global_topic_count}")
|