import streamlit as st import pandas as pd from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline from bertopic import BERTopic import torch # Initialize ARAT5 model and tokenizer for topic modeling tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/araT5-base") model = T5ForConditionalGeneration.from_pretrained("UBC-NLP/araT5-base") # Emotion classification pipeline for Arabic (use an Arabic emotion classification model) emotion_classifier = pipeline("text-classification", model="d0r13n/ara-bert-base-arabic-emotion") # Function to get embeddings from ARAT5 for topic modeling def generate_embeddings(texts): # Tokenize the Arabic text for ARAT5 inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): # Use ARAT5 to generate embeddings outputs = model.encoder(input_ids=inputs['input_ids']) # Extract the embeddings (mean of hidden states for simplicity) return outputs.last_hidden_state.mean(dim=1).numpy() # Function to process the CSV file and return emotion and topic model def process_file(uploaded_file): # Load CSV df = pd.read_csv(uploaded_file) # Display basic info about the CSV st.write("CSV Loaded Successfully!") st.write(f"Data Preview: {df.head()}") # Ensure 'date' column is in datetime format and extract the year df['date'] = pd.to_datetime(df['date'], errors='coerce') # Replace 'date' with your actual column name df['year'] = df['date'].dt.year # Modify this to use the 'poem' column that contains the Arabic poems texts = df['poem'].dropna().tolist() # Replace 'poem' with your actual column name # Emotion Classification: Classify emotions for each poem (Arabic) emotions = [emotion_classifier(text)[0]['label'] for text in texts] df['emotion'] = emotions # Topic Modeling using ARAT5 embeddings embeddings = generate_embeddings(texts) topic_model = BERTopic() topics, _ = topic_model.fit_transform(embeddings) df['topic'] = topics # Return the processed dataframe return df # Streamlit App st.title("Arabic Poem Topic Modeling & Emotion Classification with ARAT5") st.write("Upload a CSV file to perform topic modeling and emotion classification on Arabic poems.") # File upload widget uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"]) # If file is uploaded, process and display results if uploaded_file is not None: result_df = process_file(uploaded_file) # Show date selection widgets st.write("### Filter by Date Range") start_date = st.date_input("Start Date", value=pd.to_datetime(result_df['date'].min())) end_date = st.date_input("End Date", value=pd.to_datetime(result_df['date'].max())) # Filter data based on selected date range filtered_df = result_df[(result_df['date'] >= start_date) & (result_df['date'] <= end_date)] # Display filtered data st.write(f"Filtered Data (Poems from {start_date} to {end_date}):") st.write(filtered_df[['poet_name', 'era', 'poem', 'emotion', 'topic', 'date']]) # Create buttons to show different summaries summary_type = st.radio("Select Summary Type:", ("Emotion and Topic Summary by Date Range", "Global Emotion and Topic Summary")) # Display the selected summary if summary_type == "Emotion and Topic Summary by Date Range": st.write("Emotion and Topic Summary for Selected Date Range:") # Emotion Distribution in Date Range emotion_counts = filtered_df['emotion'].value_counts() st.write("Emotion Counts in Date Range:") st.write(emotion_counts) # Topic Distribution in Date Range topic_counts = filtered_df['topic'].value_counts() st.write("Topic Counts in Date Range:") st.write(topic_counts) # Visualize emotion distribution over the selected range (optional) st.bar_chart(emotion_counts, use_container_width=True) # Visualize topic distribution over the selected range (optional) st.bar_chart(topic_counts, use_container_width=True) elif summary_type == "Global Emotion and Topic Summary": st.write("Global Emotion and Topic Summary (All Poems):") global_emotion_count = result_df['emotion'].value_counts().to_dict() global_topic_count = result_df['topic'].value_counts().to_dict() st.write(f"Emotion Distribution: {global_emotion_count}") st.write(f"Topic Distribution: {global_topic_count}")