Spaces:
Running
Running
File size: 5,692 Bytes
617065a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import argparse
import gc
import os
import re
import shutil
import gradio as gr
import requests
import torch
from dreamcreature.pipeline import create_args, load_pipeline
def download_file(url, local_path):
if os.path.exists(local_path):
return
with requests.get(url, stream=True) as r:
with open(local_path, 'wb') as f:
shutil.copyfileobj(r.raw, f)
# Example usage
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='dreamcreature-sd1.5-dog')
parser.add_argument('--checkpoint', default='checkpoint-150000')
opt = parser.parse_args()
model_name = opt.model_name
checkpoint_name = opt.checkpoint
repo_url = f"https://huggingface.co/kamwoh/{model_name}/resolve/main"
file_url = repo_url + f"/{checkpoint_name}/pytorch_model.bin"
local_path = f"{model_name}/{checkpoint_name}/pytorch_model.bin"
os.makedirs(f"{model_name}/{checkpoint_name}", exist_ok=True)
download_file(file_url, local_path)
file_url = repo_url + f"/{checkpoint_name}/pytorch_model_1.bin"
local_path = f"{model_name}/{checkpoint_name}/pytorch_model_1.bin"
download_file(file_url, local_path)
OUTPUT_DIR = model_name
args = create_args(OUTPUT_DIR)
if 'dpo' in OUTPUT_DIR:
args.unet_path = "mhdang/dpo-sd1.5-text2image-v1"
pipe = load_pipeline(args, torch.float16, 'cuda')
pipe = pipe.to(torch.float16)
pipe.verbose = True
pipe.v = 're'
pipe.num_k_per_part = 120
MAPPING = {
'eye': 0,
'neck': 2,
'ear': 3,
'body': 4,
'leg': 5,
'nose': 6,
'forehead': 7
}
ID2NAME = open('data/dogs/class_names.txt').readlines()
ID2NAME = [line.strip() for line in ID2NAME]
def process_text(text):
pattern = r"<([^:>]+):(\d+)>"
result = text
offset = 0
part2id = []
for match in re.finditer(pattern, text):
key = match.group(1)
clsid = int(match.group(2))
clsid = min(max(clsid, 1), 200) # must be 1~200
replacement = f"<{MAPPING[key]}:{clsid - 1}>"
start, end = match.span()
# Adjust the start and end positions based on the offset from previous replacements
start += offset
end += offset
# Replace the matched text with the replacement
result = result[:start] + replacement + result[end:]
# Update the offset for the next replacement
offset += len(replacement) - (end - start)
part2id.append(f'{key}: {ID2NAME[clsid - 1]}')
return result, part2id
def generate_images(prompt, negative_prompt, num_inference_steps, guidance_scale, num_images, seed):
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(int(seed))
try:
prompt, part2id = process_text(prompt)
negative_prompt, _ = process_text(negative_prompt)
images = pipe(prompt,
negative_prompt=negative_prompt, generator=generator,
num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale,
num_images_per_prompt=num_images).images
except Exception as e:
raise gr.Error(f"Probably due to the prompt have invalid input, please follow the instruction. "
f"The error message: {e}")
finally:
gc.collect()
torch.cuda.empty_cache()
return images, '; '.join(part2id)
with gr.Blocks(title="DreamCreature") as demo:
with gr.Row():
gr.Markdown(
"""
# DreamCreature (Stanford Dogs)
To create your own creature, you can type:
`"a photo of a <nose:id> <ear:id> dog"` where `id` ranges from 0~119 (120 classes corresponding to Stanford Dogs)
For instance `"a photo of a <nose:2> <ear:112> dog"` using head of `maltese dog (2)` and wing of `cardigan (112)`
Please see `id` in https://github.com/kamwoh/dreamcreature/blob/master/src/data/dogs/class_names.txt
Sub-concept transfer: `"a photo of a <ear:112> cat"`
Inspiring design: `"a photo of a <eye:38> <body:38> teddy bear"`
(Experimental) You can also use two parts together such as:
`"a photo of a <nose:1> <nose:112> dog"` mixing head of `maltese dog (2)` and `spotted cardigan (112)`
The current available parts are: `eye`, `neck`, `ear`, `body`, `leg`, `nose` and `forehead`
""")
with gr.Column():
with gr.Row():
with gr.Group():
prompt = gr.Textbox(label="Prompt", value="a photo of a <eye:37> <body:37> teddy bear")
negative_prompt = gr.Textbox(label="Negative Prompt",
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
num_inference_steps = gr.Slider(minimum=10, maximum=100, step=1, value=30, label="Num Inference Steps")
guidance_scale = gr.Slider(minimum=2, maximum=20, step=0.1, value=7.5, label="Guidance Scale")
num_images = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Images")
seed = gr.Number(label="Seed", value=777881414)
button = gr.Button()
with gr.Column():
output_images = gr.Gallery(columns=4, label='Output')
markdown_labels = gr.Markdown("")
button.click(fn=generate_images,
inputs=[prompt, negative_prompt, num_inference_steps, guidance_scale, num_images,
seed], outputs=[output_images, markdown_labels], show_progress=True)
demo.queue().launch(inline=False, share=True, debug=True, server_name='0.0.0.0')
|