File size: 5,593 Bytes
9230ccf
c56f80b
b8c3f0e
af40ecb
c56f80b
d00978d
af40ecb
 
c56f80b
 
cb363d6
9230ccf
 
 
b8c3f0e
 
 
 
 
9230ccf
d00978d
c56f80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d00978d
9230ccf
 
 
 
41b93dc
9230ccf
 
 
 
eb0d262
41b93dc
9230ccf
 
 
 
 
 
 
 
 
 
c56f80b
 
b865247
4f21439
9230ccf
104a909
9230ccf
 
 
c56f80b
 
 
 
9230ccf
d00978d
c56f80b
 
 
 
9230ccf
 
 
dedce6c
a885267
dedce6c
c56f80b
0882058
a885267
0798f48
 
 
5ae4121
 
 
0798f48
c56f80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0798f48
 
 
 
 
 
 
 
 
 
c56f80b
0798f48
 
 
 
 
 
 
 
 
2335c4d
d00978d
fbc1761
0798f48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56f80b
0798f48
c56f80b
 
 
8022e8a
 
c56f80b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
# from huggingface_hub import InferenceClient
from openai import OpenAI
import os
import requests

openai_api_key = os.getenv('api_key')
openai_api_base = os.getenv('url')
db_url = os.getenv('db_url')
db_api_key = os.getenv('db_api_key')
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)


def save_conversation(history, system_message):
    conversation_data = {
        "conversation": history,
        "index": (len(history) - 1, 1),  # 最新の応答のインデックス
        "liked": None,  # 評価はnull(None)
        "system_message": system_message,
    }
    headers = {
        "X-API-Key": db_api_key
    }
    response = requests.post(db_url, json=conversation_data, headers=headers)
    if response.status_code == 200:
        print("Conversation saved successfully")
    else:
        print(f"Failed to save conversation: {response.status_code}")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [
        {"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for new_response in client.chat.completions.create(
        model=model_name,
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = new_response.choices[0].delta.content

        if token is not None:
            response += (token)
        yield response
    
    new_history = history + [(message, response)]
    save_conversation(new_history, system_message)


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

description = """
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開)
- 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開予定です**ので、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
- **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。
"""


HEADER = description
FOOTER = """### 注意
- コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。
- GPUサーバーが不安定なので、応答しないことがあるかもしれません。"""


def vote(data: gr.LikeData, history):
    vote_data = {
        "conversation": history,
        "index": data.index,
        "liked": data.liked,
        "system_message": None,
    }
    headers = {
        "X-API-Key": db_api_key  # APIキーを設定
    }
    response = requests.post(db_url, json=vote_data, headers=headers)
    if response.status_code == 200:
        print("Vote recorded successfully")
    else:
        print(f"Failed to record vote: {response.status_code}")


def run():
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        scale=1,
        show_copy_button=True,
        height="70%",
        layout="panel",
    )
    with gr.Blocks(fill_height=True) as demo:
        gr.Markdown(HEADER)
        gr.ChatInterface(
            fn=respond,
            stop_btn="Stop Generation",
            cache_examples=False,
            multimodal=False,
            chatbot=chatbot,
            additional_inputs_accordion=gr.Accordion(
                label="Parameters", open=False, render=False
            ),
            additional_inputs=[
                gr.Textbox(value="以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。",
                           label="System message(試験用: 変えると性能が低下する可能性があります。)",
                                              render=False,),
                gr.Slider(
                    minimum=1,
                    maximum=4096,
                    step=1,
                    value=1024,
                    label="Max tokens",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.3,
                    label="Temperature",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=1.0,
                    label="Top-p",
                    visible=True,
                    render=False,
                ),
            ],
            analytics_enabled=False,
        )
        chatbot.like(vote, chatbot, None)
        gr.Markdown(FOOTER)
    demo.queue(max_size=256, api_open=False)
    demo.launch(share=False, quiet=True)


if __name__ == "__main__":
    run()