Spaces:
Sleeping
Sleeping
File size: 5,593 Bytes
9230ccf c56f80b b8c3f0e af40ecb c56f80b d00978d af40ecb c56f80b cb363d6 9230ccf b8c3f0e 9230ccf d00978d c56f80b d00978d 9230ccf 41b93dc 9230ccf eb0d262 41b93dc 9230ccf c56f80b b865247 4f21439 9230ccf 104a909 9230ccf c56f80b 9230ccf d00978d c56f80b 9230ccf dedce6c a885267 dedce6c c56f80b 0882058 a885267 0798f48 5ae4121 0798f48 c56f80b 0798f48 c56f80b 0798f48 2335c4d d00978d fbc1761 0798f48 c56f80b 0798f48 c56f80b 8022e8a c56f80b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
# from huggingface_hub import InferenceClient
from openai import OpenAI
import os
import requests
openai_api_key = os.getenv('api_key')
openai_api_base = os.getenv('url')
db_url = os.getenv('db_url')
db_api_key = os.getenv('db_api_key')
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
def save_conversation(history, system_message):
conversation_data = {
"conversation": history,
"index": (len(history) - 1, 1), # 最新の応答のインデックス
"liked": None, # 評価はnull(None)
"system_message": system_message,
}
headers = {
"X-API-Key": db_api_key
}
response = requests.post(db_url, json=conversation_data, headers=headers)
if response.status_code == 200:
print("Conversation saved successfully")
else:
print(f"Failed to save conversation: {response.status_code}")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [
{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for new_response in client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = new_response.choices[0].delta.content
if token is not None:
response += (token)
yield response
new_history = history + [(message, response)]
save_conversation(new_history, system_message)
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
description = """
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開)
- 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開予定です**ので、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
- **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。
"""
HEADER = description
FOOTER = """### 注意
- コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。
- GPUサーバーが不安定なので、応答しないことがあるかもしれません。"""
def vote(data: gr.LikeData, history):
vote_data = {
"conversation": history,
"index": data.index,
"liked": data.liked,
"system_message": None,
}
headers = {
"X-API-Key": db_api_key # APIキーを設定
}
response = requests.post(db_url, json=vote_data, headers=headers)
if response.status_code == 200:
print("Vote recorded successfully")
else:
print(f"Failed to record vote: {response.status_code}")
def run():
chatbot = gr.Chatbot(
elem_id="chatbot",
scale=1,
show_copy_button=True,
height="70%",
layout="panel",
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(HEADER)
gr.ChatInterface(
fn=respond,
stop_btn="Stop Generation",
cache_examples=False,
multimodal=False,
chatbot=chatbot,
additional_inputs_accordion=gr.Accordion(
label="Parameters", open=False, render=False
),
additional_inputs=[
gr.Textbox(value="以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。",
label="System message(試験用: 変えると性能が低下する可能性があります。)",
render=False,),
gr.Slider(
minimum=1,
maximum=4096,
step=1,
value=1024,
label="Max tokens",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=1.0,
label="Top-p",
visible=True,
render=False,
),
],
analytics_enabled=False,
)
chatbot.like(vote, chatbot, None)
gr.Markdown(FOOTER)
demo.queue(max_size=256, api_open=False)
demo.launch(share=False, quiet=True)
if __name__ == "__main__":
run() |