import gradio as gr # from huggingface_hub import InferenceClient from openai import OpenAI import os openai_api_key = os.getenv('api_key') openai_api_base = os.getenv('url') model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0" """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) def respond( message, history: list[tuple[str, str]], # system_message, max_tokens, temperature, top_p, ): messages = [ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat.completions.create( model=model_name, messages=messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content # response += token if token is not None: response += (token) yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", # label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) description = """ # Tanuki-8x8B-dpo-v1.0との会話 - 自然言語処理の研究のため、入出力データは著作権フリー(CC0)で公開予定ですので、ご注意ください。 - 著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。 - 上記のルールに同意頂いた方のみ、ご利用ください。 """ # グループ化して表示 with gr.Blocks() as interface: # 説明文を表示 gr.Markdown(description) # ChatInterfaceを表示 demo if __name__ == "__main__": # demo.launch() interface.launch()