File size: 14,946 Bytes
5024af9
 
 
 
 
2a14d16
b25337f
5024af9
 
 
 
 
 
 
 
 
 
b25337f
5024af9
 
 
 
 
2a14d16
5024af9
 
 
 
 
0ff9cc9
5024af9
 
b25337f
 
 
 
5024af9
 
b25337f
5024af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff9cc9
b25337f
 
 
 
 
 
 
5024af9
 
 
 
 
 
b25337f
 
 
 
 
 
 
 
5024af9
 
 
 
 
 
 
 
 
 
 
 
b25337f
5024af9
b25337f
0ff9cc9
f1bfa96
 
0ff9cc9
 
 
 
 
 
 
 
 
5024af9
0ff9cc9
 
5024af9
 
 
b25337f
5024af9
 
 
b25337f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5024af9
 
 
 
 
 
b25337f
5024af9
 
 
 
 
 
 
b25337f
 
 
 
 
 
 
 
 
 
 
5024af9
b25337f
 
 
 
5024af9
 
b25337f
5024af9
 
 
b25337f
 
 
 
 
 
 
5024af9
 
 
 
 
 
 
 
b25337f
 
 
 
 
 
 
 
 
 
 
5024af9
b25337f
5024af9
 
 
 
b25337f
 
 
 
 
 
 
 
 
 
5024af9
 
 
b25337f
f1bfa96
5024af9
 
b25337f
2a14d16
 
 
 
 
 
b25337f
2a14d16
 
b25337f
2a14d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25337f
2a14d16
 
 
 
 
 
 
 
 
 
 
 
 
b25337f
5024af9
 
 
 
b25337f
 
 
 
 
 
 
 
 
 
 
5024af9
b25337f
 
 
 
5024af9
b25337f
5024af9
b25337f
 
 
5024af9
 
 
 
b25337f
 
f1bfa96
b25337f
 
 
 
 
 
 
 
 
 
 
5024af9
 
 
 
 
b25337f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5024af9
2a14d16
 
 
 
5024af9
b25337f
5024af9
 
 
 
 
 
 
51ebd47
5024af9
b25337f
 
 
 
5024af9
 
b25337f
5024af9
 
 
 
 
 
 
 
 
 
b25337f
 
 
 
 
 
 
 
f1bfa96
5024af9
 
 
 
b25337f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5024af9
 
b25337f
2a14d16
 
 
5024af9
 
 
b25337f
5024af9
 
b25337f
 
 
 
 
 
 
 
 
 
 
2a14d16
5024af9
 
b25337f
5024af9
2a14d16
5024af9
 
 
 
b25337f
5024af9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import logging
import plotly.graph_objs as go
import math

logging.basicConfig(level=logging.INFO)

########################################
# OKX endpoints & utility
########################################

OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"

# Allowed bar intervals on OKX, maximum 300 records at a time
TIMEFRAME_MAPPING = {
    "1m": "1m",
    "5m": "5m",
    "15m": "15m",
    "30m": "30m",
    "1h": "1H",
    "2h": "2H",
    "4h": "4H",
    "6h": "6H",
    "12h": "12H",
    "1d": "1D",
    "1w": "1W",
}

########################################
# Functions to fetch data from OKX
########################################

def fetch_okx_symbols():
    """
    Fetch spot symbols from OKX.
    """
    logging.info("Fetching symbols from OKX Spot tickers...")
    try:
        resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30)
        resp.raise_for_status()
        json_data = resp.json()

        if json_data.get("code") != "0":
            logging.error(f"Non-zero code returned: {json_data}")
            return ["Error: Could not fetch OKX symbols"]

        data = json_data.get("data", [])
        symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
        if not symbols:
            logging.warning("No spot symbols found.")
            return ["Error: No spot symbols found."]
        
        logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
        return sorted(symbols)

    except Exception as e:
        logging.error(f"Error fetching OKX symbols: {e}")
        return [f"Error: {str(e)}"]


def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=None):
    """
    Fetch up to `limit` candles (max 300) for the given symbol/timeframe.
    Optionally use `after` or `before` to page through older or newer data.
    
    OKX returns newest data first. The result here is also newest first.
    We'll reorder or combine them later as needed.
    """
    params = {
        "instId": symbol,
        "bar": timeframe,
        "limit": limit
    }
    if after is not None:
        # fetch records older than 'after'
        params["after"] = str(after)
    if before is not None:
        # fetch records newer than 'before'
        params["before"] = str(before)

    logging.info(f"Fetching chunk: symbol={symbol}, bar={timeframe}, limit={limit}, after={after}, before={before}")
    try:
        resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
        resp.raise_for_status()
        json_data = resp.json()

        if json_data.get("code") != "0":
            msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}"
            logging.error(msg)
            return pd.DataFrame(), msg

        items = json_data.get("data", [])
        if not items:
            return pd.DataFrame(), ""

        # items are newest first. We'll parse them in that order, then we can reverse later.
        columns = [
            "ts", "o", "h", "l", "c", "vol",
            "volCcy", "volCcyQuote", "confirm"
        ]
        df = pd.DataFrame(items, columns=columns)
        df.rename(columns={
            "ts": "timestamp",
            "o": "open",
            "h": "high",
            "l": "low",
            "c": "close"
        }, inplace=True)
        df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
        numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"]
        df[numeric_cols] = df[numeric_cols].astype(float)

        return df, ""
    except Exception as e:
        err_msg = f"Error fetching candles chunk for {symbol}: {e}"
        logging.error(err_msg)
        return pd.DataFrame(), err_msg


def fetch_okx_candles(symbol, timeframe="1H", total=2000):
    """
    Fetch ~`total` candles by chaining multiple requests of up to 300 each.
    We'll get the newest data first, then request older data in loops, 
    because 'after' param returns records older than the provided ts.

    Returns df in chronological order (oldest -> newest).
    """
    logging.info(f"Fetching ~{total} candles for {symbol} @ {timeframe} (in multiple chunks).")

    # We'll do enough calls to get at least `total` data points, or break if no more data.
    calls_needed = math.ceil(total / 300.0)
    all_data = []
    after_ts = None  # We'll track the earliest timestamp we see, then pass "after" to go older

    for _ in range(calls_needed):
        df_chunk, err = fetch_okx_candles_chunk(
            symbol, timeframe, limit=300, after=after_ts
        )
        if err:
            return pd.DataFrame(), err
        if df_chunk.empty:
            # No more data
            break

        # df_chunk is newest first, so the last row is the earliest in that chunk.
        earliest_ts = df_chunk["timestamp"].iloc[-1]
        # We'll keep chaining to older data by passing after = earliest_ts-1 (in ms).
        # But we need that as a Unix milliseconds integer.
        after_ts = int(earliest_ts.timestamp() * 1000 - 1)

        # Add this chunk to the big list
        all_data.append(df_chunk)

        if len(df_chunk) < 300:
            # We didn't get a full chunk, means no more older data available
            break

    # Concatenate everything
    if not all_data:
        logging.info("No data returned overall.")
        return pd.DataFrame(), "No data returned."

    df_all = pd.concat(all_data, ignore_index=True)
    # Each chunk is newest first, so the entire df is a bunch of blocks newest->oldest blocks.
    # Let's invert the final large df to chronological
    df_all.sort_values(by="timestamp", inplace=True)
    df_all.reset_index(drop=True, inplace=True)
    logging.info(f"Fetched a total of {len(df_all)} rows for {symbol}.")
    return df_all, ""


########################################
# Prophet pipeline
########################################

def prepare_data_for_prophet(df):
    """
    Convert DataFrame to Prophet-compatible format: columns ds, y.
    """
    if df.empty:
        logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
        return pd.DataFrame(columns=["ds", "y"])
    df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
    return df_prophet[["ds", "y"]]


def prophet_forecast(
    df_prophet,
    periods=10,
    freq="h",
    daily_seasonality=False,
    weekly_seasonality=False,
    yearly_seasonality=False,
    seasonality_mode="additive",
    changepoint_prior_scale=0.05,
):
    """
    Train a Prophet model with various exposed settings:
      - daily/weekly/yearly seasonality toggles
      - seasonality_mode ("additive" or "multiplicative")
      - changepoint_prior_scale (0.01 to ~10, controls overfitting)
    """
    if df_prophet.empty:
        logging.warning("No data for Prophet.")
        return pd.DataFrame(), "No data to forecast."

    try:
        model = Prophet(
            daily_seasonality=daily_seasonality,
            weekly_seasonality=weekly_seasonality,
            yearly_seasonality=yearly_seasonality,
            seasonality_mode=seasonality_mode,
            changepoint_prior_scale=changepoint_prior_scale,
        )
        model.fit(df_prophet)
        future = model.make_future_dataframe(periods=periods, freq=freq)
        forecast = model.predict(future)
        return forecast, ""
    except Exception as e:
        logging.error(f"Forecast error: {e}")
        return pd.DataFrame(), f"Forecast error: {e}"


def prophet_wrapper(
    df_prophet,
    forecast_steps,
    freq,
    daily_seasonality,
    weekly_seasonality,
    yearly_seasonality,
    seasonality_mode,
    changepoint_prior_scale,
):
    """
    Run the forecast with user-chosen settings, then keep future (new) rows only.
    """
    if len(df_prophet) < 10:
        return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."

    full_forecast, err = prophet_forecast(
        df_prophet,
        periods=forecast_steps,
        freq=freq,
        daily_seasonality=daily_seasonality,
        weekly_seasonality=weekly_seasonality,
        yearly_seasonality=yearly_seasonality,
        seasonality_mode=seasonality_mode,
        changepoint_prior_scale=changepoint_prior_scale,
    )
    if err:
        return pd.DataFrame(), err

    # Future portion only: the new rows after the original data
    future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
    return future_only, ""


########################################
# Plot helper
########################################

def create_line_plot(forecast_df):
    """
    Make a Plotly line chart from forecast.
    """
    if forecast_df.empty:
        return go.Figure()  # empty figure

    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat"],
        mode="lines",
        name="Forecast",
        line=dict(color="blue")
    ))

    # Lower bound
    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat_lower"],
        fill=None,
        mode="lines",
        line=dict(width=0, color="lightblue"),
        name="Lower"
    ))

    # Upper bound
    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat_upper"],
        fill="tonexty",
        mode="lines",
        line=dict(width=0, color="lightblue"),
        name="Upper"
    ))

    fig.update_layout(
        title="Forecasted Prices",
        xaxis_title="Timestamp",
        yaxis_title="Price",
        hovermode="x"
    )
    return fig


########################################
# Main Gradio logic
########################################

def predict(
    symbol,
    timeframe,
    forecast_steps,
    total_candles,
    daily_seasonality,
    weekly_seasonality,
    yearly_seasonality,
    seasonality_mode,
    changepoint_prior_scale,
):
    """
    1) Fetch `total_candles` historical data (in multiple parts if needed)
    2) Convert to Prophet style
    3) Run forecast with user-specified Prophet settings
    4) Return future portion
    """
    # Convert timeframe to OKX style
    okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")

    # This fetch can yield thousands of candles
    df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, total=total_candles)
    if err:
        return pd.DataFrame(), err

    df_prophet = prepare_data_for_prophet(df_raw)

    # Decide Prophet frequency
    freq = "h" if "h" in timeframe.lower() else "d"

    future_df, err2 = prophet_wrapper(
        df_prophet,
        forecast_steps,
        freq,
        daily_seasonality,
        weekly_seasonality,
        yearly_seasonality,
        seasonality_mode,
        changepoint_prior_scale,
    )
    if err2:
        return pd.DataFrame(), err2

    return future_df, ""


def display_forecast(
    symbol,
    timeframe,
    forecast_steps,
    total_candles,
    daily_seasonality,
    weekly_seasonality,
    yearly_seasonality,
    seasonality_mode,
    changepoint_prior_scale,
):
    logging.info(
        f"User requested: symbol={symbol}, timeframe={timeframe}, steps={forecast_steps}, "
        f"total_candles={total_candles}, daily={daily_seasonality}, weekly={weekly_seasonality}, "
        f"yearly={yearly_seasonality}, mode={seasonality_mode}, cps={changepoint_prior_scale}"
    )
    forecast_df, error = predict(
        symbol,
        timeframe,
        forecast_steps,
        total_candles,
        daily_seasonality,
        weekly_seasonality,
        yearly_seasonality,
        seasonality_mode,
        changepoint_prior_scale,
    )
    if error:
        return None, f"Error: {error}"

    fig = create_line_plot(forecast_df)
    return fig, forecast_df


def main():
    # Fetch OKX symbols
    symbols = fetch_okx_symbols()
    if not symbols or "Error" in symbols[0]:
        symbols = ["No symbols available"]

    with gr.Blocks() as demo:
        gr.Markdown("# Crypto Price Forecasting with Prophet")
        gr.Markdown(
            "This tool can gather thousands of historical data points from OKX's spot market "
            "and make forecasts using Prophet. You can tweak Prophet's advanced settings or "
            "increase the candle fetch size for potentially more accurate predictions.\n\n"
            "Simply pick a symbol, timeframe, how many candles (max ~2000), and forecast steps."
        )

        # Input controls
        symbol_dd = gr.Dropdown(
            label="Symbol",
            choices=symbols,
            value=symbols[0] if symbols else None
        )
        timeframe_dd = gr.Dropdown(
            label="Timeframe",
            choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"],
            value="1h"
        )
        total_candles_slider = gr.Slider(
            label="Total Candles to Fetch",
            minimum=300,
            maximum=3000,
            value=2000,
            step=100
        )
        forecast_steps_slider = gr.Slider(
            label="Forecast Steps",
            minimum=1,
            maximum=100,
            value=10
        )

        # Prophet advanced settings
        daily_box = gr.Checkbox(label="Daily Seasonality", value=False)
        weekly_box = gr.Checkbox(label="Weekly Seasonality", value=False)
        yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
        seasonality_mode_dd = gr.Dropdown(
            label="Seasonality Mode",
            choices=["additive", "multiplicative"],
            value="additive"
        )
        changepoint_scale_slider = gr.Slider(
            label="Changepoint Prior Scale (0.01 ~ 1.0)",
            minimum=0.01,
            maximum=1.0,
            step=0.01,
            value=0.05
        )

        forecast_btn = gr.Button("Generate Forecast")

        # Outputs
        chart_output = gr.Plot(label="Forecast Chart")
        df_output = gr.Dataframe(
            label="Forecast (Future Only)",
            headers=["ds", "yhat", "yhat_lower", "yhat_upper"]
        )

        # Hook everything up
        forecast_btn.click(
            fn=display_forecast,
            inputs=[
                symbol_dd,
                timeframe_dd,
                forecast_steps_slider,
                total_candles_slider,
                daily_box,
                weekly_box,
                yearly_box,
                seasonality_mode_dd,
                changepoint_scale_slider,
            ],
            outputs=[chart_output, df_output]
        )

        # You can choose any text variation you like here
        gr.Markdown(
            "For automated trading tools, consider Gunbot as your next [crypto trading bot](https://www.gunbot.com)."
        )

    return demo


if __name__ == "__main__":
    app = main()
    app.launch()