Spaces:
Running
Running
File size: 14,946 Bytes
5024af9 2a14d16 b25337f 5024af9 b25337f 5024af9 2a14d16 5024af9 0ff9cc9 5024af9 b25337f 5024af9 b25337f 5024af9 0ff9cc9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 0ff9cc9 f1bfa96 0ff9cc9 5024af9 0ff9cc9 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f f1bfa96 5024af9 b25337f 2a14d16 b25337f 2a14d16 b25337f 2a14d16 b25337f 2a14d16 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f f1bfa96 b25337f 5024af9 b25337f 5024af9 2a14d16 5024af9 b25337f 5024af9 51ebd47 5024af9 b25337f 5024af9 b25337f 5024af9 b25337f f1bfa96 5024af9 b25337f 5024af9 b25337f 2a14d16 5024af9 b25337f 5024af9 b25337f 2a14d16 5024af9 b25337f 5024af9 2a14d16 5024af9 b25337f 5024af9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import logging
import plotly.graph_objs as go
import math
logging.basicConfig(level=logging.INFO)
########################################
# OKX endpoints & utility
########################################
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
# Allowed bar intervals on OKX, maximum 300 records at a time
TIMEFRAME_MAPPING = {
"1m": "1m",
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "1H",
"2h": "2H",
"4h": "4H",
"6h": "6H",
"12h": "12H",
"1d": "1D",
"1w": "1W",
}
########################################
# Functions to fetch data from OKX
########################################
def fetch_okx_symbols():
"""
Fetch spot symbols from OKX.
"""
logging.info("Fetching symbols from OKX Spot tickers...")
try:
resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
logging.error(f"Non-zero code returned: {json_data}")
return ["Error: Could not fetch OKX symbols"]
data = json_data.get("data", [])
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
if not symbols:
logging.warning("No spot symbols found.")
return ["Error: No spot symbols found."]
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
return sorted(symbols)
except Exception as e:
logging.error(f"Error fetching OKX symbols: {e}")
return [f"Error: {str(e)}"]
def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=None):
"""
Fetch up to `limit` candles (max 300) for the given symbol/timeframe.
Optionally use `after` or `before` to page through older or newer data.
OKX returns newest data first. The result here is also newest first.
We'll reorder or combine them later as needed.
"""
params = {
"instId": symbol,
"bar": timeframe,
"limit": limit
}
if after is not None:
# fetch records older than 'after'
params["after"] = str(after)
if before is not None:
# fetch records newer than 'before'
params["before"] = str(before)
logging.info(f"Fetching chunk: symbol={symbol}, bar={timeframe}, limit={limit}, after={after}, before={before}")
try:
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}"
logging.error(msg)
return pd.DataFrame(), msg
items = json_data.get("data", [])
if not items:
return pd.DataFrame(), ""
# items are newest first. We'll parse them in that order, then we can reverse later.
columns = [
"ts", "o", "h", "l", "c", "vol",
"volCcy", "volCcyQuote", "confirm"
]
df = pd.DataFrame(items, columns=columns)
df.rename(columns={
"ts": "timestamp",
"o": "open",
"h": "high",
"l": "low",
"c": "close"
}, inplace=True)
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"]
df[numeric_cols] = df[numeric_cols].astype(float)
return df, ""
except Exception as e:
err_msg = f"Error fetching candles chunk for {symbol}: {e}"
logging.error(err_msg)
return pd.DataFrame(), err_msg
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
"""
Fetch ~`total` candles by chaining multiple requests of up to 300 each.
We'll get the newest data first, then request older data in loops,
because 'after' param returns records older than the provided ts.
Returns df in chronological order (oldest -> newest).
"""
logging.info(f"Fetching ~{total} candles for {symbol} @ {timeframe} (in multiple chunks).")
# We'll do enough calls to get at least `total` data points, or break if no more data.
calls_needed = math.ceil(total / 300.0)
all_data = []
after_ts = None # We'll track the earliest timestamp we see, then pass "after" to go older
for _ in range(calls_needed):
df_chunk, err = fetch_okx_candles_chunk(
symbol, timeframe, limit=300, after=after_ts
)
if err:
return pd.DataFrame(), err
if df_chunk.empty:
# No more data
break
# df_chunk is newest first, so the last row is the earliest in that chunk.
earliest_ts = df_chunk["timestamp"].iloc[-1]
# We'll keep chaining to older data by passing after = earliest_ts-1 (in ms).
# But we need that as a Unix milliseconds integer.
after_ts = int(earliest_ts.timestamp() * 1000 - 1)
# Add this chunk to the big list
all_data.append(df_chunk)
if len(df_chunk) < 300:
# We didn't get a full chunk, means no more older data available
break
# Concatenate everything
if not all_data:
logging.info("No data returned overall.")
return pd.DataFrame(), "No data returned."
df_all = pd.concat(all_data, ignore_index=True)
# Each chunk is newest first, so the entire df is a bunch of blocks newest->oldest blocks.
# Let's invert the final large df to chronological
df_all.sort_values(by="timestamp", inplace=True)
df_all.reset_index(drop=True, inplace=True)
logging.info(f"Fetched a total of {len(df_all)} rows for {symbol}.")
return df_all, ""
########################################
# Prophet pipeline
########################################
def prepare_data_for_prophet(df):
"""
Convert DataFrame to Prophet-compatible format: columns ds, y.
"""
if df.empty:
logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(
df_prophet,
periods=10,
freq="h",
daily_seasonality=False,
weekly_seasonality=False,
yearly_seasonality=False,
seasonality_mode="additive",
changepoint_prior_scale=0.05,
):
"""
Train a Prophet model with various exposed settings:
- daily/weekly/yearly seasonality toggles
- seasonality_mode ("additive" or "multiplicative")
- changepoint_prior_scale (0.01 to ~10, controls overfitting)
"""
if df_prophet.empty:
logging.warning("No data for Prophet.")
return pd.DataFrame(), "No data to forecast."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
logging.error(f"Forecast error: {e}")
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
"""
Run the forecast with user-chosen settings, then keep future (new) rows only.
"""
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
periods=forecast_steps,
freq=freq,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
# Future portion only: the new rows after the original data
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
########################################
# Plot helper
########################################
def create_line_plot(forecast_df):
"""
Make a Plotly line chart from forecast.
"""
if forecast_df.empty:
return go.Figure() # empty figure
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue")
))
# Lower bound
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0, color="lightblue"),
name="Lower"
))
# Upper bound
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0, color="lightblue"),
name="Upper"
))
fig.update_layout(
title="Forecasted Prices",
xaxis_title="Timestamp",
yaxis_title="Price",
hovermode="x"
)
return fig
########################################
# Main Gradio logic
########################################
def predict(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
"""
1) Fetch `total_candles` historical data (in multiple parts if needed)
2) Convert to Prophet style
3) Run forecast with user-specified Prophet settings
4) Return future portion
"""
# Convert timeframe to OKX style
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
# This fetch can yield thousands of candles
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, total=total_candles)
if err:
return pd.DataFrame(), err
df_prophet = prepare_data_for_prophet(df_raw)
# Decide Prophet frequency
freq = "h" if "h" in timeframe.lower() else "d"
future_df, err2 = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if err2:
return pd.DataFrame(), err2
return future_df, ""
def display_forecast(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
logging.info(
f"User requested: symbol={symbol}, timeframe={timeframe}, steps={forecast_steps}, "
f"total_candles={total_candles}, daily={daily_seasonality}, weekly={weekly_seasonality}, "
f"yearly={yearly_seasonality}, mode={seasonality_mode}, cps={changepoint_prior_scale}"
)
forecast_df, error = predict(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if error:
return None, f"Error: {error}"
fig = create_line_plot(forecast_df)
return fig, forecast_df
def main():
# Fetch OKX symbols
symbols = fetch_okx_symbols()
if not symbols or "Error" in symbols[0]:
symbols = ["No symbols available"]
with gr.Blocks() as demo:
gr.Markdown("# Crypto Price Forecasting with Prophet")
gr.Markdown(
"This tool can gather thousands of historical data points from OKX's spot market "
"and make forecasts using Prophet. You can tweak Prophet's advanced settings or "
"increase the candle fetch size for potentially more accurate predictions.\n\n"
"Simply pick a symbol, timeframe, how many candles (max ~2000), and forecast steps."
)
# Input controls
symbol_dd = gr.Dropdown(
label="Symbol",
choices=symbols,
value=symbols[0] if symbols else None
)
timeframe_dd = gr.Dropdown(
label="Timeframe",
choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"],
value="1h"
)
total_candles_slider = gr.Slider(
label="Total Candles to Fetch",
minimum=300,
maximum=3000,
value=2000,
step=100
)
forecast_steps_slider = gr.Slider(
label="Forecast Steps",
minimum=1,
maximum=100,
value=10
)
# Prophet advanced settings
daily_box = gr.Checkbox(label="Daily Seasonality", value=False)
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=False)
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
seasonality_mode_dd = gr.Dropdown(
label="Seasonality Mode",
choices=["additive", "multiplicative"],
value="additive"
)
changepoint_scale_slider = gr.Slider(
label="Changepoint Prior Scale (0.01 ~ 1.0)",
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.05
)
forecast_btn = gr.Button("Generate Forecast")
# Outputs
chart_output = gr.Plot(label="Forecast Chart")
df_output = gr.Dataframe(
label="Forecast (Future Only)",
headers=["ds", "yhat", "yhat_lower", "yhat_upper"]
)
# Hook everything up
forecast_btn.click(
fn=display_forecast,
inputs=[
symbol_dd,
timeframe_dd,
forecast_steps_slider,
total_candles_slider,
daily_box,
weekly_box,
yearly_box,
seasonality_mode_dd,
changepoint_scale_slider,
],
outputs=[chart_output, df_output]
)
# You can choose any text variation you like here
gr.Markdown(
"For automated trading tools, consider Gunbot as your next [crypto trading bot](https://www.gunbot.com)."
)
return demo
if __name__ == "__main__":
app = main()
app.launch()
|