sentiment / app.py
karar-shah's picture
modle UI
555cfd1
raw
history blame
3.3 kB
# in new conda env install below pakages
# pip install tensorflow==2.13.0
# pip install -U "tensorflow-text==2.13.*"
# pip install -q streamlit==1.26.0
# pip install openai==0.28.0
import openai
import streamlit as st
import tensorflow as tf
import tensorflow_text
import numpy as np
###############################################
# Setting up styles for app
###############################################
# Set page title and icon
# st.set_page_config(page_title="Bard ChatBot",
# page_icon=":robot_face:",
# initial_sidebar_state="collapsed",)
# # Custom css styles
# with open('style.css') as f:
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# st.title("ChatGPT-like clone")
openai.api_key = "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"
reloaded_model = tf.saved_model.load('one_2')
emotion_categories = {
0: 'anger',
1: 'fear',
2: 'joy',
3: 'love',
4: 'neutral',
5: 'sadness',
6: 'surprise'
}
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
if "messages" not in st.session_state:
st.session_state.messages = []
# col1, col2 = st.columns([4, 3])
# with col1:
# st.markdown('helow')
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# with col2:
# a = st.session_state.messages[-1]['content']
# st.markdown(len(st.session_state.messages) > 1)
# if len(st.session_state.messages) != 0:
# st.markdown('prediction:')
# st.markdown(st.session_state.messages[-2])
# q = st.session_state.messages[-2]['content']
# emotion = reloaded_model([q])
# true_classes = np.argmax(emotion, axis=1)
# emotion_category = emotion_categories.get(int(true_classes))
# st.markdown(emotion_category)
if prompt := st.chat_input("What is up?"):
st.session_state.messages.append({"role": "user", "content": prompt})
# USER
with st.chat_message("user"):
st.markdown(prompt)
# EMOTION
with st.chat_message("Emotion", avatar='😶'):
emotion = reloaded_model([prompt])
true_classes = np.argmax(emotion, axis=1)
emotion_category = emotion_categories.get(int(true_classes))
st.write("Emotion: {}".format(emotion_category))
# AI BOT
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for response in openai.ChatCompletion.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
):
full_response += response.choices[0].delta.get("content", "")
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_response})
uploaded_files = st.file_uploader(
"Choose a CSV file", accept_multiple_files=True)
for uploaded_file in uploaded_files:
bytes_data = uploaded_file.read()
st.write("filename:", uploaded_file.name)
st.write(bytes_data)