sentiment / app.py
karar-shah's picture
Update app.py
8d2c0b1 verified
raw
history blame
6.85 kB
import os
import time
from openai import OpenAI
import numpy as np
import streamlit as st
import tensorflow as tf
import tensorflow_text
# import plotly.graph_objects as go
# from dotenv import load_dotenv
from langchain_openai import OpenAI as OpenAiLC
from langchain.memory import ConversationSummaryMemory, ChatMessageHistory
from llm import sys_instruction
##############
# PAGE STYLES
# Set page title and icon
st.set_page_config(page_title="EmoInsight",
page_icon=":robot_face:",
initial_sidebar_state="expanded",)
# Custom css styles
with open('style.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# Load variables from .env file
# load_dotenv()
# Load large model
@st.cache_resource # Decorator to cache non-data objects
def Loading_sentiment_analysis_model():
model = tf.saved_model.load('one_2')
return model
senti_model = Loading_sentiment_analysis_model()
emoji_mapping = {
"sadness": "😒",
"neutral": "😐",
"joy": "πŸ˜„",
"anger": "😑",
"fear": "😨",
"love": "❀️",
"surprise": "😲",
}
emotion_categories = {
0: 'anger',
1: 'fear',
2: 'joy',
3: 'love',
4: 'neutral',
5: 'sadness',
6: 'surprise'
}
##################
# STATE VARIABLES
# set api key
if 'key' not in st.session_state:
st.session_state.key = os.environ["API_TOKEN"]
# openai.api_key = st.session_state.key
# gpt llm
if 'llm' not in st.session_state:
st.session_state.llm = OpenAiLC(
temperature=0.2, openai_api_key=st.session_state.key)
# model name
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
# openai client
# model name
if "client" not in st.session_state:
st.session_state["client"] = OpenAI(
api_key=st.session_state.key
)
# st chat history
if "message_history" not in st.session_state:
st.session_state.message_history = []
# set instruction for gpt response
if 'sys_inst' not in st.session_state:
st.session_state.sys_inst = sys_instruction()
# dict to store user question emotion
if 'emotion_counts' not in st.session_state:
st.session_state.emotion_counts = {
'anger': 0,
'fear': 0,
'joy': 0,
'love': 0,
'neutral': 0,
'sadness': 0,
'surprise': 0
}
#######################
# LANG-CHAIN VARIABLES
# storing chat history
if 'old_summary' not in st.session_state:
st.session_state.old_summary = 'User came to psychological assistant chatbot'
# langChian msg history
if 'lg_msg_history' not in st.session_state:
st.session_state.lg_msg_history = ChatMessageHistory()
# summarize old conversation
if 'memory' not in st.session_state:
st.session_state.memory = ConversationSummaryMemory.from_messages(
llm=st.session_state.llm,
buffer=st.session_state.old_summary,
return_messages=True,
chat_memory=st.session_state.lg_msg_history)
#############################################
# MAIN APP #
#############################################
st.sidebar.markdown('')
st.sidebar.markdown('')
st.sidebar.markdown('')
st.sidebar.success("Select `Sentiment Plot` button to see the Emotino Graph")
st.sidebar.markdown('')
clear_chats = st.sidebar.button('Clear Chat')
if clear_chats:
st.session_state.lg_msg_history.clear()
st.session_state.old_summary = 'User came to psychological assistant chatbot'
st.session_state.message_history = []
alert = st.sidebar.warning('Chat cleared', icon='🚨')
time.sleep(2) # Wait for 3 seconds
alert.empty() # Clear the alert
st.markdown("<h1><center>EmoInsight</center></h1>",
unsafe_allow_html=True)
# greetings
if len(st.session_state.message_history) == 0:
# add to st history
st.session_state.message_history.append(
{"role": "assistant", "content": "How can I help you?"})
# add to lg history
# st.session_state.lg_msg_history.add_ai_message("How can I help you?")
# HISTORY
for message in st.session_state.message_history:
if message['role'] == 'system':
with st.chat_message("Emotion", avatar=emoji_mapping.get(message["content"])):
a = "Sentiment: {}".format(message["content"])
st.markdown(a)
else:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# CHAT BOT
if prompt := st.chat_input("What is up?"):
# USER
with st.chat_message("user"):
st.markdown(prompt)
# add to st history
st.session_state.message_history.append(
{"role": "user", "content": prompt})
# add to lg history
st.session_state.lg_msg_history.add_user_message(prompt)
# SENTIMENT PREDICION
emotion = senti_model([prompt])
true_classes = np.argmax(emotion, axis=1)
emotion_category = emotion_categories.get(int(true_classes))
st.session_state.emotion_counts[emotion_category] += 1
# EMOTION
with st.chat_message("Emotion", avatar=emoji_mapping.get(emotion_category)):
st.write("Sentiment: {}".format(emotion_category))
st.session_state.message_history.append(
{"role": "system", "content": emotion_category})
# AI BOT
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# get response
for chunk in st.session_state.client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": st.session_state.sys_inst.format(
history=st.session_state.old_summary)},
{"role": "user", "content": prompt}
], # pass old chat history
stream=True):
# render gpt response in realtime
if chunk.choices[0].delta.content:
# print(chunk.choices[0].delta.content)
full_response += chunk.choices[0].delta.content
message_placeholder.markdown(full_response + "β–Œ")
message_placeholder.markdown(full_response)
# add to st history
st.session_state.message_history.append(
{"role": "assistant", "content": full_response})
# add to lg history
st.session_state.lg_msg_history.add_ai_message(prompt)
# Clear old chat after 4 dialogs
# And update old summary with new summary
chat_len = len(st.session_state.lg_msg_history.messages)
if (chat_len >= 4) and (chat_len % 4 == 0):
# get new summary of chat
st.session_state.old_summary = st.session_state.memory.predict_new_summary(
messages=st.session_state.lg_msg_history.messages,
existing_summary=st.session_state.old_summary)
# flush old lg-chat history
st.session_state.lg_msg_history.clear()