Spaces:
Running
Running
import gradio as gr | |
import torch | |
from utils import * | |
torch.hub.download_url_to_file( | |
'https://github.com/aalto-ui/aim/raw/aim2/backend/data/tests/input_values/wikipedia.org_website.png', | |
'wikipedia.org_website.png') | |
torch.hub.download_url_to_file( | |
'https://github.com/aalto-ui/aim/raw/aim2/backend/data/tests/input_values/aalto.fi_website.png', | |
'aalto.fi_website.png') | |
def inference(img, template, angel): | |
color_image = cv2.imread(img.name, cv2.IMREAD_COLOR) | |
height, width, _ = color_image.shape | |
# Resize if it is bigeer than 960 * 800 | |
if width > height: | |
if width > 960: # 3/4 * 1280 | |
coef_div = width / 960.0 | |
color_image = cv2.resize(color_image, dsize=(int(width / coef_div), int(height / coef_div)), | |
interpolation=cv2.INTER_CUBIC) | |
else: | |
if height > 800: # 800 | |
coef_div = height / 800.0 | |
color_image = cv2.resize(color_image, dsize=(int(width / coef_div), int(height / coef_div)), | |
interpolation=cv2.INTER_CUBIC) | |
HSV_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2HSV) | |
selected_harmomic_scheme = HarmonicScheme(str(template), int(angel)) | |
new_HSV_image = best_harmomic_scheme.hue_shifted(HSV_image, num_superpixels=-1) | |
# Compute shifted histogram | |
histo_1 = count_hue_histogram(HSV_image) | |
histo_2 = count_hue_histogram(new_HSV_image) | |
# Create Hue Plots | |
fig1 = plothis(histo_1, best_harmomic_scheme, "Source Hue") | |
fig_1_cv = get_img_from_fig(fig1) | |
fig2 = plothis(histo_2, best_harmomic_scheme, "Target Hue") | |
fig_2_cv = get_img_from_fig(fig2) | |
# Stack Hue Plots | |
vis = np.concatenate((fig_1_cv, fig_2_cv), axis=0) | |
# Convert HSV to BGR | |
result_image = cv2.cvtColor(new_HSV_image, cv2.COLOR_HSV2BGR) | |
# Final output | |
canvas = np.full((800, 960, 3), (255, 255, 255), dtype=np.uint8) | |
# compute center offset | |
x_center = (960 - width) // 2 | |
y_center = (800 - height) // 2 | |
# copy img image into center of result image | |
canvas[y_center:y_center + height, x_center:x_center + width] = result_image | |
# Combine | |
output = np.concatenate((vis, canvas), axis=1) | |
cv2.imwrite('output.png', output) | |
return ['output.png'] | |
title = 'Color Harmonization' | |
description = 'Compute Color Harmonization with Different Templates' | |
article = "<p style='text-align: center'></p>" | |
examples = [['wikipedia.org_website.png'], ['aalto.fi_website.png']] | |
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" | |
gr.Interface( | |
inference, | |
[gr.inputs.Image(type='file', label='Input'), | |
gr.inputs.Dropdown(["X", "Y", "T", "I", "mirror_L", "L", "V", "i"], | |
default="X", | |
label="Template"), | |
gr.inputs.Slider(0, 359, label="Angle")], | |
[gr.outputs.Image(type='file', label='Color Harmonization of Output Image')], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
).launch(debug=True, enable_queue=True) | |