import gradio as gr from huggingface_hub import InferenceClient # Hugging Face inference client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = msg.choices[0].delta.content response += token yield response # Enhanced UI with ChatGPT-like design with gr.Blocks(css=""" body {background-color: #212121; color: #EAEAEA; font-family: Arial, sans-serif;} .chat-container { max-width: 800px; margin: auto; padding: 20px; } .chat-message { border-radius: 10px; padding: 10px 15px; margin: 5px 0; max-width: 80%; } .user-message { background: #007AFF; color: white; align-self: flex-end; } .bot-message { background: #333333; color: white; align-self: flex-start; } .gradio-container { max-width: 900px; margin: auto; } """) as demo: gr.Markdown("""

💬 AI Chat Assistant

An interactive chatbot experience with a modern UI.

""") with gr.Row(): system_message = gr.Textbox( value="You are a helpful and intelligent assistant.", label="System Message", interactive=True, show_label=False, ) with gr.Row(): max_tokens = gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max Tokens" ) temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p" ) chatbot = gr.ChatInterface( respond, additional_inputs=[system_message, max_tokens, temperature, top_p], bubble_colors=("#007AFF", "#444444"), show_copy_button=True, ) demo.launch()