import gradio as gr from huggingface_hub import InferenceClient # Hugging Face inference client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = msg.choices[0].delta.content response += token yield response # Enhanced UI with ChatGPT-like design with gr.Blocks(theme=gr.themes.Default()) as demo: gr.Markdown("""
A sleek and interactive chatbot experience powered by AI.
""") with gr.Row(): system_message = gr.Textbox( value="You are a helpful and intelligent assistant.", label="System Message", interactive=True, show_label=False, elem_id="system-message", ) with gr.Row(): max_tokens = gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max Tokens" ) temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p" ) with gr.Box(): chatbot = gr.ChatInterface( respond, additional_inputs=[system_message, max_tokens, temperature, top_p], bubble_colors=("#007AFF", "#E5E5EA"), show_copy_button=True, elem_id="chat-container" ) gr.Markdown(""" """) demo.launch()