Spaces:
Sleeping
Sleeping
File size: 3,394 Bytes
ab5233c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import streamlit as st
import requests
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load Hugging Face Model
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B", trust_remote_code=True)
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024)
with torch.no_grad():
outputs = model.generate(**inputs, max_length=1024, pad_token_id=tokenizer.eos_token_id)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Function to fetch Wikipedia summary
def search_travel_info(destination):
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{destination}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("extract", "No information found.")
return "No results found."
# Function to generate travel itinerary
def generate_itinerary(start_location, budget, duration, destination, purpose, preferences):
search_results = search_travel_info(destination)
# System Prompt
system_prompt = "You are an expert travel guide. Your goal is to create a well-structured, detailed itinerary based on the user's preferences."
# User Prompt
user_prompt = f"""
{system_prompt}
### π·οΈ **Traveler Information**:
- **Budget**: {budget}
- **Purpose of Travel**: {purpose}
- **Preferences**: {preferences}
### π **Day-wise Itinerary**:
- π Day-by-day activities, including morning, afternoon, and evening plans
- π Must-visit attractions (famous landmarks + hidden gems)
- π½οΈ Local cuisines and top dining recommendations
- π¨ Best places to stay (based on budget)
- π Transportation options (from {start_location} to {destination} and local travel)
### π **Additional Considerations**:
- π Cultural experiences, festivals, or seasonal events
- ποΈ Shopping and souvenir recommendations
- πΉ Safety tips, best times to visit, and local customs
- πΊοΈ Alternative plans for bad weather days
### βΉοΈ **Additional Information from External Sources**:
{search_results}
Make sure the itinerary is engaging, practical, and customized based on the userβs budget and preferences.
"""
# Generate Response
return generate_text(user_prompt)
# Streamlit UI
st.title("AI-Powered Travel Planner")
st.write("Plan your next trip with AI!")
start_location = st.text_input("Starting Location")
destination = st.text_input("Destination")
budget = st.selectbox("Select Budget", ["Low", "Moderate", "Luxury"])
duration = st.number_input("Trip Duration (days)", min_value=1, max_value=30, value=3)
purpose = st.text_area("Purpose of Trip")
preferences = st.text_area("Your Preferences (e.g., adventure, food, history)")
if st.button("Generate Itinerary"):
if start_location and destination and purpose and preferences:
itinerary = generate_itinerary(start_location, budget, duration, destination, purpose, preferences)
st.subheader("Your AI-Generated Itinerary:")
st.write(itinerary)
else:
st.warning("Please fill in all fields.")
|