File size: 15,691 Bytes
beb5b30 56ef556 beb5b30 7ebedb1 beb5b30 14627c2 56ef556 2f3ede2 56ef556 beb5b30 56ef556 beb5b30 2f3ede2 beb5b30 2f3ede2 beb5b30 2f3ede2 051bb1b 2f3ede2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import os
import tempfile
import numpy as np
from subprocess import Popen, PIPE
import torch
import gradio as gr
from pydub import AudioSegment
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers.pipelines.audio_utils import ffmpeg_read
from sentence_transformers import SentenceTransformer, util
import spacy
import spacy.cli
spacy.cli.download("en_core_web_sm")
# Constants
MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
device = 0 if torch.cuda.is_available() else "cpu"
# Whisper pipeline
whisper_pipeline = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# NLP model and other helpers
nlp = spacy.load("en_core_web_sm")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
# Summarization model
summarizer_model_name = "Mahalingam/DistilBart-Med-Summary"
tokenizer = AutoTokenizer.from_pretrained(summarizer_model_name)
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained(summarizer_model_name)
summarizer = pipeline("summarization", model=summarizer_model, tokenizer=tokenizer)
# SOAP prompts and embeddings
soap_prompts = {
"subjective": "Personal reports, symptoms described by patients, or personal health concerns. Details reflecting individual symptoms or health descriptions.",
"objective": "Observable facts, clinical findings, professional observations, specific medical specialties, and diagnoses.",
"assessment": "Clinical assessments, expertise-based opinions on conditions, and significance of medical interventions. Focused on medical evaluations or patient condition summaries.",
"plan": "Future steps, recommendations for treatment, follow-up instructions, and healthcare management plans."
}
soap_embeddings = {section: embedder.encode(prompt, convert_to_tensor=True) for section, prompt in soap_prompts.items()}
# Convert MP4 to MP3
def convert_mp4_to_mp3(mp4_path, mp3_path):
try:
audio = AudioSegment.from_file(mp4_path, format="mp4")
audio.export(mp3_path, format="mp3")
except Exception as e:
raise RuntimeError(f"Error converting MP4 to MP3: {e}")
# Transcribe audio
def transcribe_audio(audio_path):
try:
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
# Read and process the audio file
audio_array = ffmpeg_read(audio_path, whisper_pipeline.feature_extractor.sampling_rate)
# Ensure audio data is a numpy array of type float32
if not isinstance(audio_array, np.ndarray):
raise TypeError("Audio data should be a numpy array.")
audio_array = audio_array.astype(np.float32)
# Create input dictionary for Whisper
inputs = {
"array": audio_array,
"sampling_rate": whisper_pipeline.feature_extractor.sampling_rate,
}
# Perform transcription
result = whisper_pipeline(inputs, batch_size=BATCH_SIZE, return_timestamps=False)
return result["text"]
except Exception as e:
return f"Error during transcription: {e}"
# Classify the sentence to the correct SOAP section
def classify_sentence(sentence):
similarities = {section: util.pytorch_cos_sim(embedder.encode(sentence), soap_embeddings[section]) for section in soap_prompts.keys()}
return max(similarities, key=similarities.get)
# Summarize the section if it's too long
def summarize_section(section_text):
if len(section_text.split()) < 50:
return section_text
target_length = int(len(section_text.split()) * 0.50)
inputs = tokenizer.encode(section_text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = summarizer_model.generate(
inputs,
max_length=target_length,
min_length=int(target_length * 0.45),
length_penalty=1.0,
num_beams=4
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Analyze the SOAP content and divide into sections
def soap_analysis(text):
doc = nlp(text)
soap_note = {section: "" for section in soap_prompts.keys()}
for sentence in doc.sents:
section = classify_sentence(sentence.text)
soap_note[section] += sentence.text + " "
# Summarize each section of the SOAP note
for section in soap_note:
soap_note[section] = summarize_section(soap_note[section].strip())
return format_soap_output(soap_note)
# Format the SOAP note output
def format_soap_output(soap_note):
return (
f"Subjective:\n{soap_note['subjective']}\n\n"
f"Objective:\n{soap_note['objective']}\n\n"
f"Assessment:\n{soap_note['assessment']}\n\n"
f"Plan:\n{soap_note['plan']}\n"
)
# Process file function for audio/video to SOAP
def process_file(file, user_prompt):
# Determine file type and convert if necessary
if file.name.endswith(".mp4"):
temp_mp3_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
try:
convert_mp4_to_mp3(file.name, temp_mp3_path)
audio_path = temp_mp3_path
except Exception as e:
return f"Error during MP4 to MP3 conversion: {e}", "", ""
else:
audio_path = file.name
# Transcribe audio
transcription = transcribe_audio(audio_path)
print("Transcribed Text: ", transcription)
# Perform SOAP analysis
soap_note = soap_analysis(transcription)
print("SOAP Notes: ", soap_note)
# Clean up temporary files
if file.name.endswith(".mp4"):
os.remove(temp_mp3_path)
return soap_note
# Process text function for text input to SOAP
def process_text(text, user_prompt):
soap_note = soap_analysis(text)
print(soap_note)
return soap_note
# Gradio interface
def launch_gradio():
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# Enhanced Video to SOAP Note Generator")
with gr.Tab("Audio/Video File to SOAP"):
gr.Interface(
fn=process_file,
inputs=[gr.File(label="Upload Audio/Video File"), gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6)],
outputs=[
gr.Textbox(label="SOAP Note"),
],
)
with gr.Tab("Text Input to SOAP"):
gr.Interface(
fn=process_text,
inputs=[gr.Textbox(label="Enter Text", placeholder="Enter medical notes...", lines=6), gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6)],
outputs=[
gr.Textbox(label="SOAP Note"),
],
)
demo.launch(share=True, debug=True)
# Run the Gradio app
if __name__ == "__main__":
launch_gradio()
# import os
# import tempfile
# from subprocess import Popen, PIPE
# import torch
# import gradio as gr
# from pydub import AudioSegment
# from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# from transformers.pipelines.audio_utils import ffmpeg_read
# from sentence_transformers import SentenceTransformer, util
# import spacy
# import spacy.cli
# spacy.cli.download("en_core_web_sm")
# # Constants
# MODEL_NAME = "openai/whisper-large-v3-turbo"
# BATCH_SIZE = 8
# FILE_LIMIT_MB = 1000
# device = 0 if torch.cuda.is_available() else "cpu"
# # Whisper pipeline
# whisper_pipeline = pipeline(
# task="automatic-speech-recognition",
# model=MODEL_NAME,
# chunk_length_s=30,
# device=device,
# )
# # NLP model and other helpers
# nlp = spacy.load("en_core_web_sm")
# embedder = SentenceTransformer("all-MiniLM-L6-v2")
# # Summarization model
# summarizer_model_name = "Mahalingam/DistilBart-Med-Summary"
# tokenizer = AutoTokenizer.from_pretrained(summarizer_model_name)
# summarizer_model = AutoModelForSeq2SeqLM.from_pretrained(summarizer_model_name)
# summarizer = pipeline("summarization", model=summarizer_model, tokenizer=tokenizer)
# # SOAP prompts and embeddings
# soap_prompts = {
# "subjective": "Personal reports, symptoms described by patients, or personal health concerns. Details reflecting individual symptoms or health descriptions.",
# "objective": "Observable facts, clinical findings, professional observations, specific medical specialties, and diagnoses.",
# "assessment": "Clinical assessments, expertise-based opinions on conditions, and significance of medical interventions. Focused on medical evaluations or patient condition summaries.",
# "plan": "Future steps, recommendations for treatment, follow-up instructions, and healthcare management plans."
# }
# soap_embeddings = {section: embedder.encode(prompt, convert_to_tensor=True) for section, prompt in soap_prompts.items()}
# # Convert MP4 to MP3
# def convert_mp4_to_mp3(mp4_path, mp3_path):
# try:
# audio = AudioSegment.from_file(mp4_path, format="mp4")
# audio.export(mp3_path, format="mp3")
# except Exception as e:
# raise RuntimeError(f"Error converting MP4 to MP3: {e}")
# # Transcribe audio
# def transcribe_audio(audio_path):
# try:
# if not os.path.exists(audio_path):
# raise FileNotFoundError(f"Audio file not found: {audio_path}")
# # Read the audio file and prepare inputs for Whisper
# inputs = ffmpeg_read(audio_path, whisper_pipeline.feature_extractor.sampling_rate)
# inputs = {"array": inputs, "sampling_rate": whisper_pipeline.feature_extractor.sampling_rate}
# # Perform transcription using Whisper
# result = whisper_pipeline(inputs, batch_size=BATCH_SIZE, return_timestamps=False)
# return result["text"]
# except Exception as e:
# return f"Error during transcription: {e}"
# # Classify the sentence to the correct SOAP section
# def classify_sentence(sentence):
# similarities = {section: util.pytorch_cos_sim(embedder.encode(sentence), soap_embeddings[section]) for section in soap_prompts.keys()}
# return max(similarities, key=similarities.get)
# # Summarize the section if it's too long
# def summarize_section(section_text):
# if len(section_text.split()) < 50:
# return section_text
# target_length = int(len(section_text.split()) * 0.50)
# inputs = tokenizer.encode(section_text, return_tensors="pt", truncation=True, max_length=1024)
# summary_ids = summarizer_model.generate(
# inputs,
# max_length=target_length,
# min_length=int(target_length * 0.45),
# length_penalty=1.0,
# num_beams=4
# )
# return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# # Analyze the SOAP content and divide into sections
# def soap_analysis(text):
# doc = nlp(text)
# soap_note = {section: "" for section in soap_prompts.keys()}
# for sentence in doc.sents:
# section = classify_sentence(sentence.text)
# soap_note[section] += sentence.text + " "
# # Summarize each section of the SOAP note
# for section in soap_note:
# soap_note[section] = summarize_section(soap_note[section].strip())
# return format_soap_output(soap_note)
# # Format the SOAP note output
# def format_soap_output(soap_note):
# return (
# f"Subjective:\n{soap_note['subjective']}\n\n"
# f"Objective:\n{soap_note['objective']}\n\n"
# f"Assessment:\n{soap_note['assessment']}\n\n"
# f"Plan:\n{soap_note['plan']}\n"
# )
# # Process file function for audio/video to SOAP
# def process_file(file, user_prompt):
# # Determine file type and convert if necessary
# if file.name.endswith(".mp4"):
# temp_mp3_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
# try:
# convert_mp4_to_mp3(file.name, temp_mp3_path)
# audio_path = temp_mp3_path
# except Exception as e:
# return f"Error during MP4 to MP3 conversion: {e}", "", ""
# else:
# audio_path = file.name
# # Transcribe audio
# transcription = transcribe_audio(audio_path)
# print("Transcribed Text: ", transcription)
# # Perform SOAP analysis
# soap_note = soap_analysis(transcription)
# print("SOAP Notes: ", soap_note)
# # # Generate template and JSON using LLaMA
# # template_output = llama_query(user_prompt, soap_note)
# # print("Template: ", template_output)
# # json_output = llama_convert_to_json(template_output)
# # Clean up temporary files
# if file.name.endswith(".mp4"):
# os.remove(temp_mp3_path)
# return soap_note#, template_output, json_output
# # Process text function for text input to SOAP
# def process_text(text, user_prompt):
# soap_note = soap_analysis(text)
# print(soap_note)
# # template_output = llama_query(user_prompt, soap_note)
# # print(template_output)
# # json_output = llama_convert_to_json(template_output)
# return soap_note#, template_output, json_output
# # # Llama query function
# # def llama_query(user_prompt, soap_note, model="llama3.2"):
# # combined_prompt = f"User Instructions:\n{user_prompt}\n\nContext:\n{soap_note}"
# # try:
# # process = Popen(['ollama', 'run', model], stdin=PIPE, stdout=PIPE, stderr=PIPE, text=True, encoding='utf-8')
# # stdout, stderr = process.communicate(input=combined_prompt)
# # if process.returncode != 0:
# # return f"Error: {stderr.strip()}"
# # return stdout.strip()
# # except Exception as e:
# # return f"Unexpected error: {str(e)}"
# # # Convert the response to JSON format
# # def llama_convert_to_json(template_output, model="llama3.2"):
# # json_prompt = f"Convert the following template into a structured JSON format:\n\n{template_output}"
# # try:
# # process = Popen(['ollama', 'run', model], stdin=PIPE, stdout=PIPE, stderr=PIPE, text=True, encoding='utf-8')
# # stdout, stderr = process.communicate(input=json_prompt)
# # if process.returncode != 0:
# # return f"Error: {stderr.strip()}"
# # return stdout.strip() # Assuming the model outputs a valid JSON string
# # except Exception as e:
# # return f"Unexpected error: {str(e)}"
# # Gradio interface
# def launch_gradio():
# with gr.Blocks(theme=gr.themes.Default()) as demo:
# gr.Markdown("# Enhanced Video to SOAP Note Generator")
# with gr.Tab("Audio/Video File to SOAP"):
# gr.Interface(
# fn=process_file,
# inputs=[gr.File(label="Upload Audio/Video File"), gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6)],
# outputs=[
# gr.Textbox(label="SOAP Note"),
# # gr.Textbox(label="Generated Template from LLaMA"),
# # gr.Textbox(label="JSON Output")
# ],
# )
# with gr.Tab("Text Input to SOAP"):
# gr.Interface(
# fn=process_text,
# inputs=[gr.Textbox(label="Enter Text", placeholder="Enter medical notes...", lines=6), gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6)],
# outputs=[
# gr.Textbox(label="SOAP Note"),
# # gr.Textbox(label="Generated Template from LLaMA"),
# # gr.Textbox(label="JSON Output")
# ],
# )
# demo.launch(share=True, debug=True)
# # Run the Gradio app
# if __name__ == "__main__":
# launch_gradio()
|