Spaces:
Running
Running
# from transformers import pipeline | |
# insurance_context = """ | |
# Insurance is a contract, represented by a policy, in which an individual or entity receives financial protection against losses. | |
# Common types include life insurance, health insurance, auto insurance, and home insurance. | |
# Life insurance provides a sum of money to beneficiaries upon the insured's death, while health insurance covers medical expenses. | |
# Auto insurance offers protection against vehicle-related accidents and damages. Home insurance covers damages to one’s property. | |
# """ | |
# qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad") | |
# def ask_question(question, context=insurance_context): | |
# # Use the model to answer the question based on the context | |
# response = qa_pipeline({ | |
# 'question': question, | |
# 'context': context | |
# }) | |
# return response['answer'] | |
# def chat(): | |
# print("Hello! I'm your insurance Q&A chatbot. Ask me anything about insurance.") | |
# while True: | |
# user_input = input("You: ") | |
# if user_input.lower() in ["exit", "quit"]: | |
# print("Thank you for using the chatbot. Goodbye!") | |
# break | |
# answer = ask_question(user_input) | |
# print("Bot:", answer) | |
# chat() | |
# import streamlit as st | |
# from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration | |
# # Load BlenderBot model and tokenizer | |
# model_name = "facebook/blenderbot-400M-distill" | |
# tokenizer = BlenderbotTokenizer.from_pretrained(model_name) | |
# model = BlenderbotForConditionalGeneration.from_pretrained(model_name) | |
# # Function to generate a response from BlenderBot | |
# def get_blenderbot_response(input_text): | |
# inputs = tokenizer(input_text, return_tensors="pt") | |
# reply_ids = model.generate(**inputs) | |
# response = tokenizer.decode(reply_ids[0], skip_special_tokens=True) | |
# return response | |
# # Streamlit app | |
# st.title("Insurance Q&A Chatbot") | |
# st.write("Ask any question about insurance, and I'll do my best to help!") | |
# # Chat history | |
# if "history" not in st.session_state: | |
# st.session_state.history = [] | |
# # Input text box for user | |
# user_input = st.text_input("You:", "") | |
# # Respond to user input | |
# if user_input: | |
# # Add user question to history | |
# st.session_state.history.append({"user": user_input}) | |
# # Generate bot response | |
# response = get_blenderbot_response(user_input) | |
# st.session_state.history.append({"bot": response}) | |
# # Display chat history | |
# for message in st.session_state.history: | |
# if "user" in message: | |
# st.write("**You:**", message["user"]) | |
# if "bot" in message: | |
# st.write("**Bot:**", message["bot"]) | |
import streamlit as st | |
from rasa.core.agent import Agent | |
from rasa.shared.core.domain import Domain | |
from rasa.shared.core.tracker_store import InMemoryTrackerStore | |
from rasa.shared.nlu.interpreter import RasaNLUInterpreter | |
# Load Rasa model | |
domain = Domain.load("insurance_domain.yml") | |
interpreter = RasaNLUInterpreter("insurance_nlu.pkl") | |
tracker_store = InMemoryTrackerStore(domain) | |
agent = Agent.load("insurance_model", interpreter=interpreter, tracker_store=tracker_store) | |
# Define Streamlit app | |
st.title("Insurance Chatbot") | |
user_input = st.text_area("You:", height=200) | |
if st.button("Send"): | |
response = agent.handle_text(user_input) | |
st.text_area("Bot:", value=response[0].text, height=200, max_chars=None, key=None) |