File size: 880 Bytes
eed818f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb48749
06d98e9
17f5d0b
bb48749
eed818f
bb48749
eed818f
 
17f5d0b
bb48749
17f5d0b
eed818f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# import streamlit as st
# from transformers import pipeline 
# summarizer = pipeline("summarization")
# # pipe=pipeline("sentiment-analysis")
# # col1, col2 = st.columns(2)

# # with col1:
# #     x=st.button("Sentiment Analysis")
# # with col2:    
# #     y=st.button("Text Summarization")

# # if x:
# #     t=st.text_input("Enter the Text")
# #     st.write(pipe(t))
# # if y:             
# t1=st.text_input("Enter the Text for Summarization")
# st.write(summarizer(t1))

#from transformers import AutoTokenizer, AutoModel
import streamlit as st

#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1")

#model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1")
# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("feature-extraction")
   
t=st.text_input("Enter the Text")
st.write(pipe(t))