# import streamlit as st # from transformers import pipeline # # pipe=pipeline("sentiment-analysis") # # col1, col2 = st.columns(2) # # with col1: # # x=st.button("Sentiment Analysis") # # with col2: # # y=st.button("Text Summarization") # # if x: # # t=st.text_input("Enter the Text") # # st.write(pipe(t)) # # if y: # t1=st.text_input("Enter the Text for Summarization") # st.write(summarizer(t1)) #from transformers import AutoTokenizer, AutoModel # import streamlit as st #tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1") # #model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1") # # Use a pipeline as a high-level helper # from transformers import pipeline # #pipe = pipeline("feature-extraction") # t=st.text_input("Enter the Text") # pipe = pipeline("summarization") # st.write(pipe(t)) # import pandas as pd # import numpy as np # from ydata_synthetic.synthesizers.regular import RegularSynthesizer # from ydata_synthetic.synthesizers import ModelParameters, TrainParameters # import streamlit as st # from os import getcwd # text_file=st.file_uploader("Upload the Data File") # st.write("-------------------------") # if text_file is not None: # df=pd.read_csv(text_file) # dd_list=df.columns # cat_cols=st.multiselect("Select the Categorical Columns",dd_list) # num_cols=st.multiselect("Select the Numerical Columns",dd_list) # Output_file=st.text_input('Enter Output File Name') # s=st.number_input('Enter the Sample Size',1000) # OP=Output_file + '.csv' # sub=st.button('Submit') # if sub: # batch_size = 50 # epochs = 3 # learning_rate = 2e-4 # beta_1 = 0.5 # beta_2 = 0.9 # ctgan_args = ModelParameters(batch_size=batch_size, # lr=learning_rate, # betas=(beta_1, beta_2)) # train_args = TrainParameters(epochs=epochs) # synth = RegularSynthesizer(modelname='ctgan', model_parameters=ctgan_args) # synth.fit(data=df, train_arguments=train_args, num_cols=num_cols, cat_cols=cat_cols) # df_syn = synth.sample(s) # df_syn.to_csv(OP) # c=getcwd() # c=c + '/' + OP # with open(c,"rb") as file: # st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png") # st.success("Thanks for using the app !!!") # import torch # import streamlit as st # from transformers import AutoModelForCausalLM, AutoTokenizer # #torch.set_default_device("cuda") # model = AutoModelForCausalLM.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", torch_dtype="auto", trust_remote_code=True) # tokenizer = AutoTokenizer.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", trust_remote_code=True) # i=st.text_input('Prompt', 'Life of Brian') # #inputs = tokenizer('''### Instruction: What Does Basic Homeowners Insurance Cover?\n### Response: ''', return_tensors="pt", return_attention_mask=False) # inputs = tokenizer(i, return_tensors="pt", return_attention_mask=False) # outputs = model.generate(**inputs, max_length=1024) # text = tokenizer.batch_decode(outputs)[0] # print(text) import torch import streamlit as st from transformers import AutoModelForCausalseq2seqLM, AutoTokenizer model_name="facebook/blenderbot-400M-distill" model=AutoModelForCausalseq2seqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ch=[] chat(): h_s="\n".join(ch) i=st.input("enter") IS=TOKENIZER.ENCODE_PLUS(H_S,I,return_tensors="pt") outputs=model.generate(**inputs,max_length=60) response=tokenizer.decode(outputs[0],skip_special_tokens=True).strip() c_h.appned(i) c_h.append(response) return response if __name__ == "__main__": chat()