|
import pandas as pd |
|
import numpy as np |
|
from ydata_synthetic.synthesizers.regular import RegularSynthesizer |
|
from ydata_synthetic.synthesizers import ModelParameters, TrainParameters |
|
import streamlit as st |
|
from os import getcwd |
|
text_file=st.file_uploader("Upload the Data File") |
|
st.write("-----------------------------") |
|
|
|
if text_file is not None: |
|
df=pd.read_csv(text_file) |
|
dd_list=df.columns |
|
cat_cols=st.multiselect("Select the Categorical Columns",dd_list) |
|
num_cols=st.multiselect("Select the Numerical Columns",dd_list) |
|
Output_file=st.text_input('Enter Output File Name') |
|
s=st.number_input('Enter the Sample Size',1000) |
|
OP=Output_file + '.csv' |
|
sub=st.button('Submit') |
|
if sub: |
|
batch_size = 50 |
|
epochs = 3 |
|
learning_rate = 2e-4 |
|
beta_1 = 0.5 |
|
beta_2 = 0.9 |
|
|
|
ctgan_args = ModelParameters(batch_size=batch_size, |
|
lr=learning_rate, |
|
betas=(beta_1, beta_2)) |
|
|
|
train_args = TrainParameters(epochs=epochs) |
|
synth = RegularSynthesizer(modelname='ctgan', model_parameters=ctgan_args) |
|
synth.fit(data=df, train_arguments=train_args, num_cols=num_cols, cat_cols=cat_cols) |
|
df_syn = synth.sample(s) |
|
df_syn.to_csv(OP) |
|
c=getcwd() |
|
c=c + '/' + OP |
|
with open(c,"rb") as file: |
|
st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png") |
|
st.success("Thanks for using the app !!!") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|