karthik55's picture
Upload 9 files
c06e143 verified
import os
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
from ResNet_for_CC import CC_model # Import fixed model
# Set device (CPU/GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the trained CC_model
model_path = "CC_net.pt"
model = CC_model(num_classes=14)
# Load model weights
state_dict = torch.load(model_path, map_location=device)
model.load_state_dict(state_dict, strict=False)
model.to(device)
model.eval()
# Clothing1M Class Labels
class_labels = [
"T-Shirt", "Shirt", "Knitwear", "Chiffon", "Sweater", "Hoodie",
"Windbreaker", "Jacket", "Downcoat", "Suit", "Shawl", "Dress",
"Vest", "Underwear"
]
# Define image transformations
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# ๐Ÿ”น **Dynamically Fetch All Example Images (Including .webp)**
def get_example_images():
examples_dir = "examples"
if not os.path.exists(examples_dir):
print("[WARNING] 'examples/' directory does not exist.")
return []
# Fetch all image files (including .webp)
image_files = sorted([
os.path.join(examples_dir, f) for f in os.listdir(examples_dir)
if f.lower().endswith((".png", ".jpg", ".jpeg", ".webp"))
])
if not image_files:
print("[WARNING] No images found in 'examples/' directory.")
print(f"[INFO] Found {len(image_files)} images in 'examples/'")
return image_files
# ๐Ÿ”น **Classification Function**
def classify_image(image):
print("\n[DEBUG] Received image for classification.")
try:
image = transform(image).unsqueeze(0).to(device)
print("[DEBUG] Image transformed and moved to device.")
with torch.no_grad():
output = model(image)
print(f"[DEBUG] Model output shape: {output.shape}")
print(f"[DEBUG] Model output values: {output}")
if output.shape[1] != 14:
return f"[ERROR] Model output mismatch! Expected 14 but got {output.shape[1]}."
# Convert logits to probabilities
probabilities = F.softmax(output, dim=1)
print(f"[DEBUG] Softmax probabilities: {probabilities}")
# Print class predictions and probabilities
for i, prob in enumerate(probabilities[0].tolist()):
print(f"[INFO] {class_labels[i]}: {prob * 100:.2f}%")
# Get predicted class index
predicted_class = torch.argmax(probabilities, dim=1).item()
print(f"[DEBUG] Predicted class index: {predicted_class} (Class: {class_labels[predicted_class]})")
# Validate prediction
if 0 <= predicted_class < len(class_labels):
predicted_label = class_labels[predicted_class]
confidence = probabilities[0][predicted_class].item() * 100
return f"Predicted Class: {predicted_label} (Confidence: {confidence:.2f}%)"
else:
return "[ERROR] Model returned an invalid class index."
except Exception as e:
print(f"[ERROR] Exception during classification: {e}")
return "Error in classification. Check console for details."
# ๐Ÿ”น **Create Gradio Interface with Dynamic Examples**
interface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs="text",
title="Clothing1M Image Classifier",
description="Upload a clothing image, or select an example below to classify it.",
examples=get_example_images() # Dynamically load all images including .webp
)
# Run the Interface
if __name__ == "__main__":
print("[INFO] Launching Gradio interface...")
interface.launch()