import torch import torch.nn as nn import torchvision.models as models class ResClassifier(nn.Module): def __init__(self, class_num=14): super(ResClassifier, self).__init__() self.fc1 = nn.Sequential( nn.Linear(128, 64), nn.BatchNorm1d(64, affine=True), nn.ReLU(inplace=True), nn.Dropout() ) self.fc2 = nn.Sequential( nn.Linear(64, 64), nn.BatchNorm1d(64, affine=True), nn.ReLU(inplace=True), nn.Dropout() ) self.fc3 = nn.Linear(64, class_num) def forward(self, x): fc1_emb = self.fc1(x) fc2_emb = self.fc2(fc1_emb) logit = self.fc3(fc2_emb) return logit class CC_model(nn.Module): def __init__(self, num_classes=14): super(CC_model, self).__init__() self.num_classes = num_classes self.model_resnet = models.resnet50(weights='ResNet50_Weights.DEFAULT') # Modify final layers num_ftrs = self.model_resnet.fc.in_features self.model_resnet.fc = nn.Identity() # Remove ResNet's default final layer self.classification_fc = nn.Linear(num_ftrs, num_classes) self.dr = nn.Linear(num_ftrs, 128) # Feature reduction (for embeddings) self.fc1 = ResClassifier(num_classes) self.fc2 = ResClassifier(num_classes) def forward(self, x): feature = self.model_resnet(x) class_logits = self.classification_fc(feature) # Correct classification output return class_logits # Ensure output shape is [batch_size, 14]