Spaces:
Sleeping
Sleeping
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation | |
from PIL import Image | |
import requests | |
import matplotlib.pyplot as plt | |
import torch.nn as nn | |
processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes") | |
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes") | |
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80" | |
#image = Image.open(requests.get(url, stream=True).raw) | |
image_path = "C:/Users/Admin/Downloads/dress1.jpg" | |
image = Image.open(image_path) | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits.cpu() | |
print("here") | |
upsampled_logits = nn.functional.interpolate( | |
logits, | |
size=image.size[::-1], | |
mode="bilinear", | |
align_corners=False, | |
) | |
print(upsampled_logits.argmax(dim=1)) | |
pred_seg = upsampled_logits.argmax(dim=1)[0] | |
plt.imshow(pred_seg) | |
import matplotlib as mpl | |
label_names = list(model.config.id2label) | |
# Create a color map with the same number of colors as your labels | |
# Use the updated method to get the colormap | |
cmap = mpl.colormaps['tab20'] | |
# Create the figure and axes for the plot and the colorbar | |
fig, ax = plt.subplots() | |
# Display the segmentation | |
im = ax.imshow(pred_seg, cmap=cmap) | |
# Create a colorbar | |
cbar = fig.colorbar(im, ax=ax, ticks=range(len(label_names))) | |
cbar.ax.set_yticklabels(label_names) | |
plt.show() | |
# Get the number of labels | |
n_labels = len(label_names) | |
# Extract RGB values for each color in the colormap | |
colors = cmap.colors[:n_labels] | |
# Convert RGBA to RGB by omitting the Alpha value | |
rgb_colors = [color[:3] for color in colors] | |
# Create a dictionary mapping labels to RGB colors | |
label_to_color = dict(zip(label_names, rgb_colors)) | |
# Display the mapping | |
for label, color in label_to_color.items(): | |
print(f"{label}: {color}") |