Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
|
4 |
-
# Load the model
|
5 |
-
|
|
|
|
|
6 |
|
7 |
def respond(
|
8 |
message,
|
@@ -19,17 +21,23 @@ def respond(
|
|
19 |
prompt += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
|
20 |
prompt += f"User: {message}\nAssistant: "
|
21 |
|
|
|
|
|
|
|
22 |
# Generate response
|
23 |
-
|
24 |
-
|
25 |
max_length=max_tokens,
|
26 |
temperature=temperature,
|
27 |
top_p=top_p,
|
28 |
do_sample=True,
|
29 |
num_return_sequences=1
|
30 |
-
)
|
|
|
|
|
|
|
31 |
|
32 |
-
# Extract
|
33 |
try:
|
34 |
assistant_response = response.split("Assistant: ")[-1].strip()
|
35 |
except:
|
@@ -72,4 +80,4 @@ demo = gr.ChatInterface(
|
|
72 |
)
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "karthikqnq/qnqgpt2"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
def respond(
|
10 |
message,
|
|
|
21 |
prompt += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
|
22 |
prompt += f"User: {message}\nAssistant: "
|
23 |
|
24 |
+
# Tokenize the input prompt
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
26 |
+
|
27 |
# Generate response
|
28 |
+
outputs = model.generate(
|
29 |
+
**inputs,
|
30 |
max_length=max_tokens,
|
31 |
temperature=temperature,
|
32 |
top_p=top_p,
|
33 |
do_sample=True,
|
34 |
num_return_sequences=1
|
35 |
+
)
|
36 |
+
|
37 |
+
# Decode the output and extract only the assistant's response
|
38 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
|
40 |
+
# Extract the assistant's reply after "Assistant:"
|
41 |
try:
|
42 |
assistant_response = response.split("Assistant: ")[-1].strip()
|
43 |
except:
|
|
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
+
demo.launch()
|