kartik2627 commited on
Commit
2a60cb8
·
verified ·
1 Parent(s): d65ce4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -51
app.py CHANGED
@@ -1,64 +1,76 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
38
 
39
- response += token
40
- yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
+ # Load CodeGen model
5
+ model_name = "Salesforce/codegen-350M-mono"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
9
+ # Set padding token
10
+ tokenizer.pad_token = tokenizer.eos_token
11
+ model.config.pad_token_id = model.config.eos_token_id
12
 
13
+ # Language templates
14
+ language_templates = {
15
+ "Python": "# Language: Python\n# Task: ",
16
+ "JavaScript": "// Language: JavaScript\n// Task: ",
17
+ "C++": "// Language: C++\n// Task: ",
18
+ "Java": "// Language: Java\n// Task: ",
19
+ "HTML": "<!-- Language: HTML -->\n<!-- Task: ",
20
+ "SQL": "-- Language: SQL\n-- Task: ",
21
+ "Bash": "# Language: Bash\n# Task: "
22
+ }
23
 
24
+ # Code generation function
25
+ def generate_code(prompt, language="Python", temperature=0.7, max_tokens=256):
26
+ template = language_templates.get(language, "")
27
+ full_prompt = template + prompt + "\n"
28
+
29
+ inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
30
+ outputs = model.generate(
31
+ **inputs,
32
+ max_length=len(inputs["input_ids"][0]) + max_tokens,
33
+ temperature=temperature,
34
+ top_p=0.95,
35
+ top_k=50,
36
+ do_sample=True,
37
+ pad_token_id=tokenizer.pad_token_id,
38
+ eos_token_id=tokenizer.eos_token_id
39
+ )
40
+
41
+ generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
42
+ return generated_code[len(full_prompt):].strip()
43
 
44
+ # Chat function with history
45
+ def chat_with_codegen(user_input, language, history):
46
+ if not user_input.strip():
47
+ return history, "Please enter a prompt."
48
 
49
+ generated_code = generate_code(user_input, language)
50
+ history.append((f"[{language}] {user_input}", generated_code))
51
+ return history, generated_code
52
 
53
+ # Gradio UI
54
+ with gr.Blocks(title="Multilingual CodeGen Chatbot with History") as demo:
55
+ gr.Markdown("## 🤖 CodeGen Chatbot with Language Support + Prompt History")
56
+ gr.Markdown("Describe what you want the code to do. Select a language. Click Generate!")
57
+
58
+ with gr.Row():
59
+ lang_choice = gr.Dropdown(choices=list(language_templates.keys()), value="Python", label="💬 Language")
60
+ user_input = gr.Textbox(label="📝 Your Prompt", placeholder="e.g., Write a function to reverse a string")
61
+
62
+ chatbot = gr.Chatbot(label="🧠 Chat History")
63
+ output = gr.Code(label="🧾 Generated Code")
64
 
65
+ state = gr.State([]) # Keeps history
 
66
 
67
+ generate_btn = gr.Button("🚀 Generate Code")
68
 
69
+ generate_btn.click(
70
+ fn=chat_with_codegen,
71
+ inputs=[user_input, lang_choice, state],
72
+ outputs=[chatbot, output]
73
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ demo.launch()
76