kartikay24's picture
Update app.py
c78e02a
raw
history blame
1.77 kB
import torch
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import gradio as gr
device="cpu"
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to(device)
# Function to process the image and generate captions
def generate_caption(image, caption_type, text):
raw_image = Image.fromarray(image.astype('uint8'), 'RGB')
if caption_type == "Conditional":
caption = conditional_image_captioning(raw_image, text)
else:
caption = unconditional_image_captioning(raw_image)
return caption
# Conditional image captioning
def conditional_image_captioning(raw_image, text):
inputs = processor(raw_image, text, return_tensors="pt").to(device, torch.float16)
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
# Unconditional image captioning
def unconditional_image_captioning(raw_image):
inputs = processor(raw_image, return_tensors="pt").to(device, torch.float16)
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
# Interface setup
input_image = gr.inputs.Image()
input_text = gr.inputs.Textbox(label="Enter Text (for Conditional Captioning)")
choices = ["Conditional", "Unconditional"]
radio_button = gr.inputs.Radio(choices, label="Captioning Type")
output_text = gr.outputs.Textbox(label="Caption")
# Create the interface
gr.Interface(fn=generate_caption, inputs=[input_image, radio_button, input_text], outputs=output_text, title="Image Captioning",debug=True).launch()