import torch import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration import gradio as gr processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda") # Function to process the image and generate captions def generate_caption(image, caption_type, text): raw_image = Image.fromarray(image.astype('uint8'), 'RGB') if caption_type == "Conditional": caption = conditional_image_captioning(raw_image, text) else: caption = unconditional_image_captioning(raw_image) return caption # Conditional image captioning def conditional_image_captioning(raw_image, text): inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption # Unconditional image captioning def unconditional_image_captioning(raw_image): inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption # Interface setup input_image = gr.inputs.Image() input_text = gr.inputs.Textbox(label="Enter Text (for Conditional Captioning)") choices = ["Conditional", "Unconditional"] radio_button = gr.inputs.Radio(choices, label="Captioning Type") output_text = gr.outputs.Textbox(label="Caption") # Create the interface gr.Interface(fn=generate_caption, inputs=[input_image, radio_button, input_text], outputs=output_text, title="Image Captioning",debug=True).launch()