import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration import gradio as gr processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def generate_caption(image, caption_type, text): raw_image = Image.fromarray(image.astype('uint8'), 'RGB') if caption_type == "Conditional": caption = conditional_image_captioning(raw_image, text) else: caption = unconditional_image_captioning(raw_image) return caption def conditional_image_captioning(raw_image, text): inputs = processor(raw_image, text, return_tensors="pt") out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption def unconditional_image_captioning(raw_image): inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption input_image = gr.inputs.Image(label="Upload an Image") input_text = gr.inputs.Textbox(label="Enter Text (for Conditional Captioning)") radio_button = gr.inputs.Radio(choices=["Conditional", "Unconditional"], label="Captioning Type") output_text = gr.outputs.Textbox(label="Caption") #examples = [[f"Image{i}.png" ] + ["Unconditional", ""] for i in range(1, 4)] examples = [["Image1.png","Conditional", "Goal"], ["Image2.png","Unconditional", ""], ["Image3.png","Conditional", "Watch"]] gr.Interface(fn=generate_caption, inputs=[input_image, radio_button, input_text], outputs=output_text, examples = examples, title="Image Captioning", description = "Model was taken from https://huggingface.co/Salesforce/blip-image-captioning-base.You can provide words as conditions to give a direction to your caption.You can refer to the examples below.").launch()