Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer | |
from peft import LoraConfig, get_peft_model | |
from datasets import load_dataset | |
import spaces | |
import gradio as gr | |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME === | |
MODEL_NAME = "mistralai/Mistral-7B-v0.1" # Hugging Face model adı | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
# === 2️⃣ CPU OPTİMİZASYONU === | |
zero = torch.Tensor([0]).cuda() | |
print(zero.device) # <-- 'cpu' 🤔 | |
def greet(n): | |
print(zero.device) # <-- 'cuda:0' 🤗 | |
return f"Hello {zero + n} Tensor" | |
print(zero.device) # <-- 'cuda:0' 🤗 | |
device = "cpu" # CPU kullanıyoruz | |
torch_dtype = torch.float32 # float32 seçtik çünkü CPU'da bf16 genelde yok | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype) | |
# === 3️⃣ LoRA AYARLARI === | |
lora_config = LoraConfig( | |
r=8, | |
lora_alpha=32, | |
lora_dropout=0.1, | |
bias="none", | |
target_modules=["q_proj", "v_proj"], | |
) | |
model = get_peft_model(model, lora_config) | |
# === 4️⃣ VERİ SETİ === | |
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True) # 🔥 ÇÖZÜM: trust_remote_code=True | |
train_data = dataset["train"].shuffle(seed=42).select(range(10000)) # Küçük subset | |
# === 5️⃣ TOKENLEŞTİRME FONKSİYONU === | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True, max_length=512) | |
tokenized_datasets = train_data.map(tokenize_function, batched=True) | |
# === 6️⃣ EĞİTİM AYARLARI === | |
training_args = TrainingArguments( | |
output_dir="./mistral_lora_cpu", | |
per_device_train_batch_size=1, | |
gradient_accumulation_steps=16, | |
learning_rate=5e-4, | |
num_train_epochs=1, | |
save_steps=500, | |
save_total_limit=2, | |
logging_dir="./logs", | |
logging_steps=10, | |
optim="adamw_torch", # 🔥 ÇÖZÜM: bitsandbytes yerine adamw_torch | |
) | |
# === 7️⃣ MODEL EĞİTİMİ === | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets, | |
) | |
trainer.train() | |