Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,107 +3,82 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments,
|
|
3 |
from peft import LoraConfig, get_peft_model
|
4 |
from datasets import load_dataset
|
5 |
import gradio as gr
|
|
|
6 |
import spaces
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
@spaces.GPU
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
@spaces.GPU
|
41 |
-
def tokenize_function(examples):
|
42 |
-
return tokenizer(examples["text"], truncation=True, max_length=512)
|
43 |
-
|
44 |
-
tokenized_datasets = subset.map(tokenize_function, batched=True)
|
45 |
-
|
46 |
-
# === 6️⃣ EĞİTİM AYARLARI ===
|
47 |
-
# Eğitimde kaç adım olduğunu hesaplayalım
|
48 |
-
train_size = len(tokenized_datasets) # 10,000 örnek
|
49 |
-
batch_size = 1 # Batch size 1
|
50 |
-
num_epochs = 1 # 1 epoch eğitimi
|
51 |
-
max_steps = (train_size // batch_size) * num_epochs # max_steps hesapla
|
52 |
-
|
53 |
-
training_args = TrainingArguments(
|
54 |
-
output_dir="./mistral_lora",
|
55 |
-
per_device_train_batch_size=1,
|
56 |
-
gradient_accumulation_steps=16,
|
57 |
-
learning_rate=5e-4,
|
58 |
-
num_train_epochs=1,
|
59 |
-
max_steps=max_steps, # Buraya max_steps parametresini ekliyoruz
|
60 |
-
save_steps=500,
|
61 |
-
save_total_limit=2,
|
62 |
-
logging_dir="./logs",
|
63 |
-
logging_steps=10,
|
64 |
-
optim="adamw_torch",
|
65 |
-
train_dataset=split_dataset["train"],
|
66 |
-
eval_dataset=split_dataset["test"],
|
67 |
-
no_cuda=True, # GPU kullanılmıyor
|
68 |
-
)
|
69 |
-
train_model()
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
# === 7️⃣ MODEL EĞİTİMİ ===
|
73 |
@spaces.GPU
|
74 |
def train_model():
|
75 |
-
trainer = Trainer(
|
76 |
-
model=model,
|
77 |
-
args=training_args,
|
78 |
-
train_dataset=tokenized_datasets,
|
79 |
-
)
|
80 |
trainer.train()
|
81 |
|
82 |
-
|
83 |
-
demo = gr.ChatInterface(
|
84 |
-
slow_echo,
|
85 |
-
type="messages",
|
86 |
-
flagging_mode="manual",
|
87 |
-
flagging_options=["Like", "Spam", "Inappropriate", "Other"],
|
88 |
-
save_history=True,
|
89 |
-
)
|
90 |
-
|
91 |
@spaces.GPU
|
92 |
def slow_echo(message, history):
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
yield "You typed: " + message[: i + 1]
|
98 |
|
99 |
demo = gr.ChatInterface(
|
100 |
slow_echo,
|
101 |
-
type="
|
102 |
flagging_mode="manual",
|
103 |
flagging_options=["Like", "Spam", "Inappropriate", "Other"],
|
104 |
save_history=True,
|
105 |
)
|
106 |
|
107 |
if __name__ == "__main__":
|
108 |
-
|
109 |
-
|
|
|
3 |
from peft import LoraConfig, get_peft_model
|
4 |
from datasets import load_dataset
|
5 |
import gradio as gr
|
6 |
+
import time
|
7 |
import spaces
|
8 |
|
9 |
+
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME ===
|
10 |
+
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
12 |
|
13 |
+
torch_dtype = torch.float32
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
|
15 |
+
|
16 |
+
# === 2️⃣ LoRA AYARLARI ===
|
17 |
+
lora_config = LoraConfig(
|
18 |
+
r=8,
|
19 |
+
lora_alpha=32,
|
20 |
+
lora_dropout=0.1,
|
21 |
+
bias="none",
|
22 |
+
target_modules=["q_proj", "v_proj"],
|
23 |
+
)
|
24 |
+
model = get_peft_model(model, lora_config)
|
25 |
|
26 |
+
# === 3️⃣ VERİ SETİ ===
|
27 |
+
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True)
|
28 |
+
subset = dataset["train"].shuffle(seed=42).select(range(10000))
|
29 |
|
30 |
@spaces.GPU
|
31 |
+
def tokenize_function(examples):
|
32 |
+
return tokenizer(examples["text"], truncation=True, max_length=512)
|
33 |
+
|
34 |
+
tokenized_datasets = subset.map(tokenize_function, batched=True)
|
35 |
+
|
36 |
+
# === 4️⃣ EĞİTİM AYARLARI ===
|
37 |
+
batch_size = 1
|
38 |
+
num_epochs = 1
|
39 |
+
max_steps = (len(tokenized_datasets) // batch_size) * num_epochs
|
40 |
+
|
41 |
+
training_args = TrainingArguments(
|
42 |
+
output_dir="./mistral_lora",
|
43 |
+
per_device_train_batch_size=1,
|
44 |
+
gradient_accumulation_steps=16,
|
45 |
+
learning_rate=5e-4,
|
46 |
+
num_train_epochs=1,
|
47 |
+
max_steps=max_steps,
|
48 |
+
save_steps=500,
|
49 |
+
save_total_limit=2,
|
50 |
+
logging_dir="./logs",
|
51 |
+
logging_steps=10,
|
52 |
+
optim="adamw_torch",
|
53 |
+
no_cuda=True,
|
54 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
trainer = Trainer(
|
57 |
+
model=model,
|
58 |
+
args=training_args,
|
59 |
+
train_dataset=tokenized_datasets,
|
60 |
+
)
|
61 |
|
|
|
62 |
@spaces.GPU
|
63 |
def train_model():
|
|
|
|
|
|
|
|
|
|
|
64 |
trainer.train()
|
65 |
|
66 |
+
# === 5️⃣ CHAT ARAYÜZÜ ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
@spaces.GPU
|
68 |
def slow_echo(message, history):
|
69 |
+
response = "Model henüz eğitilmedi. Lütfen eğitimi başlatın."
|
70 |
+
if model:
|
71 |
+
response = f"You typed: {message}"
|
72 |
+
return response
|
|
|
73 |
|
74 |
demo = gr.ChatInterface(
|
75 |
slow_echo,
|
76 |
+
type="text",
|
77 |
flagging_mode="manual",
|
78 |
flagging_options=["Like", "Spam", "Inappropriate", "Other"],
|
79 |
save_history=True,
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
+
train_model()
|
84 |
+
demo.launch(share=True)
|