Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,20 @@
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
3 |
from peft import LoraConfig, get_peft_model
|
4 |
-
from datasets import load_dataset
|
5 |
-
import
|
6 |
-
import os
|
7 |
|
8 |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME ===
|
9 |
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
|
12 |
-
# === 2️⃣ CPU/GPU OPTİMİZASYONU ===
|
13 |
-
torch_dtype = torch.float32 # CPU için en iyi seçenek
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=
|
16 |
|
17 |
-
# ===
|
18 |
lora_config = LoraConfig(
|
19 |
r=8,
|
20 |
lora_alpha=32,
|
@@ -24,26 +24,25 @@ lora_config = LoraConfig(
|
|
24 |
)
|
25 |
model = get_peft_model(model, lora_config)
|
26 |
|
27 |
-
# ===
|
28 |
-
DATASET_PATH = "oscar_tr.parquet"
|
29 |
|
30 |
if os.path.exists(DATASET_PATH):
|
31 |
-
print("📂 Kaydedilmiş
|
32 |
-
from datasets import Dataset
|
33 |
dataset = Dataset.from_parquet(DATASET_PATH)
|
34 |
else:
|
35 |
print("🌍 Veri seti indiriliyor ve kaydediliyor...")
|
36 |
-
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", split="train", trust_remote_code=True)
|
37 |
-
dataset = dataset.shuffle(seed=42).select(range(10000)) # Küçük subset
|
38 |
-
dataset.to_parquet(DATASET_PATH) # İlk çalışmada
|
39 |
|
40 |
-
# ===
|
41 |
def tokenize_function(examples):
|
42 |
return tokenizer(examples["text"], truncation=True, max_length=512)
|
43 |
|
44 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True
|
45 |
|
46 |
-
# ===
|
47 |
training_args = TrainingArguments(
|
48 |
output_dir="./mistral_lora_cpu",
|
49 |
per_device_train_batch_size=1,
|
@@ -55,16 +54,45 @@ training_args = TrainingArguments(
|
|
55 |
logging_dir="./logs",
|
56 |
logging_steps=10,
|
57 |
optim="adamw_torch",
|
58 |
-
dataloader_pin_memory=True, # 🔥 GPU bellek optimizasyonu
|
59 |
)
|
60 |
|
61 |
-
# ===
|
62 |
-
|
|
|
63 |
trainer = Trainer(
|
64 |
model=model,
|
65 |
args=training_args,
|
66 |
train_dataset=tokenized_datasets,
|
67 |
)
|
68 |
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
6 |
from peft import LoraConfig, get_peft_model
|
7 |
+
from datasets import load_dataset, Dataset
|
8 |
+
from huggingface_hub import notebook_login, HfApi
|
|
|
9 |
|
10 |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME ===
|
11 |
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
|
|
|
|
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32).to(device)
|
16 |
|
17 |
+
# === 2️⃣ LoRA AYARLARI ===
|
18 |
lora_config = LoraConfig(
|
19 |
r=8,
|
20 |
lora_alpha=32,
|
|
|
24 |
)
|
25 |
model = get_peft_model(model, lora_config)
|
26 |
|
27 |
+
# === 3️⃣ VERİ SETİ ===
|
28 |
+
DATASET_PATH = "/home/user/app/oscar_tr.parquet"
|
29 |
|
30 |
if os.path.exists(DATASET_PATH):
|
31 |
+
print("📂 Kaydedilmiş dataset bulundu, yükleniyor...")
|
|
|
32 |
dataset = Dataset.from_parquet(DATASET_PATH)
|
33 |
else:
|
34 |
print("🌍 Veri seti indiriliyor ve kaydediliyor...")
|
35 |
+
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", split="train", streaming=True, trust_remote_code=True)
|
36 |
+
dataset = dataset.shuffle(seed=42).select(range(10000)) # Küçük subset
|
37 |
+
dataset.to_parquet(DATASET_PATH) # İlk çalışmada kaydediyoruz
|
38 |
|
39 |
+
# === 4️⃣ TOKENLEŞTİRME ===
|
40 |
def tokenize_function(examples):
|
41 |
return tokenizer(examples["text"], truncation=True, max_length=512)
|
42 |
|
43 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
44 |
|
45 |
+
# === 5️⃣ EĞİTİM AYARLARI ===
|
46 |
training_args = TrainingArguments(
|
47 |
output_dir="./mistral_lora_cpu",
|
48 |
per_device_train_batch_size=1,
|
|
|
54 |
logging_dir="./logs",
|
55 |
logging_steps=10,
|
56 |
optim="adamw_torch",
|
|
|
57 |
)
|
58 |
|
59 |
+
# === 6️⃣ GPU İLE EĞİTİM BAŞLATMA ===
|
60 |
+
@spaces.GPU
|
61 |
+
def train_model():
|
62 |
trainer = Trainer(
|
63 |
model=model,
|
64 |
args=training_args,
|
65 |
train_dataset=tokenized_datasets,
|
66 |
)
|
67 |
trainer.train()
|
68 |
+
return "✅ Model Eğitimi Tamamlandı!"
|
69 |
+
|
70 |
+
# === 7️⃣ MODELİ HUGGING FACE HUB'A YÜKLEME ===
|
71 |
+
def upload_model():
|
72 |
+
notebook_login() # Hugging Face hesabına giriş yap
|
73 |
+
api = HfApi()
|
74 |
+
api.upload_folder(
|
75 |
+
folder_path="./mistral_lora_cpu",
|
76 |
+
repo_id="kullanici_adin/mistral-lora-modeli",
|
77 |
+
repo_type="model",
|
78 |
+
)
|
79 |
+
return "✅ Model Hugging Face Hub'a Yüklendi!"
|
80 |
+
|
81 |
+
# === 8️⃣ GRADIO ARAYÜZÜ ===
|
82 |
+
def generate_text(prompt):
|
83 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
84 |
+
output = model.generate(**inputs, max_length=100)
|
85 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
86 |
+
|
87 |
+
iface = gr.Interface(
|
88 |
+
fn=generate_text,
|
89 |
+
inputs=gr.Textbox(lines=2, placeholder="Buraya bir şeyler yaz..."),
|
90 |
+
outputs="text",
|
91 |
+
live=True
|
92 |
+
)
|
93 |
|
94 |
+
# === 9️⃣ BAŞLATMA ===
|
95 |
+
if __name__ == "__main__":
|
96 |
+
train_model() # Eğitimi başlat
|
97 |
+
upload_model() # Modeli Hugging Face Hub'a yükle
|
98 |
+
iface.launch() # Gradio UI başlat
|