kasim90 commited on
Commit
94c5b67
·
verified ·
1 Parent(s): e48ae69

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -51
app.py CHANGED
@@ -18,55 +18,56 @@ print(zero.device) # <-- 'cpu' 🤔
18
  @spaces.GPU
19
  def greet(n):
20
  print(zero.device) # <-- 'cuda:0' 🤗
21
- return f"Hello {zero + n} Tensor"
22
-
23
- print(zero.device) # <-- 'cuda:0' 🤗
24
-
25
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
27
- demo.launch()
28
- torch_dtype = torch.float32 # float32 seçtik çünkü CPU'da bf16 genelde yok
29
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
30
-
31
- # === 3️⃣ LoRA AYARLARI ===
32
- lora_config = LoraConfig(
33
- r=8,
34
- lora_alpha=32,
35
- lora_dropout=0.1,
36
- bias="none",
37
- target_modules=["q_proj", "v_proj"],
38
- )
39
- model = get_peft_model(model, lora_config)
40
-
41
- # === 4️⃣ VERİ SETİ ===
42
- dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True) # 🔥 ÇÖZÜM: trust_remote_code=True
43
- train_data = dataset["train"].shuffle(seed=42).select(range(10000)) # Küçük subset
44
-
45
- # === 5️⃣ TOKENLEŞTİRME FONKSİYONU ===
46
- def tokenize_function(examples):
47
- return tokenizer(examples["text"], truncation=True, max_length=512)
48
-
49
- tokenized_datasets = train_data.map(tokenize_function, batched=True)
50
-
51
- # === 6️⃣ EĞİTİM AYARLARI ===
52
- training_args = TrainingArguments(
53
- output_dir="./mistral_lora_cpu",
54
- per_device_train_batch_size=1,
55
- gradient_accumulation_steps=16,
56
- learning_rate=5e-4,
57
- num_train_epochs=1,
58
- save_steps=500,
59
- save_total_limit=2,
60
- logging_dir="./logs",
61
- logging_steps=10,
62
- optim="adamw_torch", # 🔥 ÇÖZÜM: bitsandbytes yerine adamw_torch
63
- )
64
-
65
- # === 7️⃣ MODEL EĞİTİMİ ===
66
- trainer = Trainer(
67
- model=model,
68
- args=training_args,
69
- train_dataset=tokenized_datasets,
70
- )
71
-
72
- trainer.train()
 
18
  @spaces.GPU
19
  def greet(n):
20
  print(zero.device) # <-- 'cuda:0' 🤗
21
+
22
+
23
+ print(zero.device) # <-- 'cuda:0' 🤗
24
+
25
+
26
+
27
+ torch_dtype = torch.float32 # float32 seçtik çünkü CPU'da bf16 genelde yok
28
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
29
+
30
+ # === 3️⃣ LoRA AYARLARI ===
31
+ lora_config = LoraConfig(
32
+ r=8,
33
+ lora_alpha=32,
34
+ lora_dropout=0.1,
35
+ bias="none",
36
+ target_modules=["q_proj", "v_proj"],
37
+ )
38
+ model = get_peft_model(model, lora_config)
39
+
40
+ # === 4️⃣ VERİ SETİ ===
41
+ dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True) # 🔥 ÇÖZÜM: trust_remote_code=True
42
+ train_data = dataset["train"].shuffle(seed=42).select(range(10000)) # Küçük subset
43
+
44
+ # === 5️⃣ TOKENLEŞTİRME FONKSİYONU ===
45
+ def tokenize_function(examples):
46
+ return tokenizer(examples["text"], truncation=True, max_length=512)
47
+
48
+ tokenized_datasets = train_data.map(tokenize_function, batched=True)
49
+
50
+ # === 6️⃣ EĞİTİM AYARLARI ===
51
+ training_args = TrainingArguments(
52
+ output_dir="./mistral_lora_cpu",
53
+ per_device_train_batch_size=1,
54
+ gradient_accumulation_steps=16,
55
+ learning_rate=5e-4,
56
+ num_train_epochs=1,
57
+ save_steps=500,
58
+ save_total_limit=2,
59
+ logging_dir="./logs",
60
+ logging_steps=10,
61
+ optim="adamw_torch", # 🔥 ÇÖZÜM: bitsandbytes yerine adamw_torch
62
+ )
63
+
64
+ # === 7️⃣ MODEL EĞİTİMİ ===
65
+ trainer = Trainer(
66
+ model=model,
67
+ args=training_args,
68
+ train_dataset=tokenized_datasets,
69
+ )
70
+
71
+ trainer.train()
72
  demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
73
+ demo.launch()