Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -16,66 +16,64 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
16 |
zero = torch.Tensor([0]).cuda()
|
17 |
print(zero.device) # <-- 'cpu' 🤔
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
print(zero.device) # <-- 'cuda:0' 🤗
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
torch_dtype = torch.float32 # float32 seçtik çünkü CPU'da bf16 genelde yok
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
|
29 |
-
|
30 |
-
# === 3️⃣ LoRA AYARLARI ===
|
31 |
-
lora_config = LoraConfig(
|
32 |
-
r=8,
|
33 |
-
lora_alpha=32,
|
34 |
-
lora_dropout=0.1,
|
35 |
-
bias="none",
|
36 |
-
target_modules=["q_proj", "v_proj"],
|
37 |
-
)
|
38 |
-
model = get_peft_model(model, lora_config)
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
def tokenize_function(examples):
|
46 |
-
return tokenizer(examples["text"], truncation=True, max_length=512)
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
output_dir="./mistral_lora_cpu",
|
53 |
-
per_device_train_batch_size=1,
|
54 |
-
gradient_accumulation_steps=16,
|
55 |
-
learning_rate=5e-4,
|
56 |
-
num_train_epochs=1,
|
57 |
-
save_steps=500,
|
58 |
-
save_total_limit=2,
|
59 |
-
logging_dir="./logs",
|
60 |
-
logging_steps=10,
|
61 |
-
optim="adamw_torch", # 🔥 ÇÖZÜM: bitsandbytes yerine adamw_torch
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
def trainf():
|
67 |
-
|
68 |
-
v= Trainer(
|
69 |
-
|
70 |
-
model=model,
|
71 |
-
|
72 |
-
args=training_args,
|
73 |
-
|
74 |
-
train_dataset=tokenized_datasets,
|
75 |
-
|
76 |
-
)
|
77 |
-
return v
|
78 |
-
|
79 |
-
trainf().train()
|
80 |
-
demo = gr.Interface(fn=greet)
|
81 |
-
demo.launch()
|
|
|
16 |
zero = torch.Tensor([0]).cuda()
|
17 |
print(zero.device) # <-- 'cpu' 🤔
|
18 |
|
19 |
+
|
20 |
+
print(zero.device) # <-- 'cuda:0' 🤗
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
|
23 |
+
print(zero.device) # <-- 'cuda:0' 🤗
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
torch_dtype = torch.float32 # float32 seçtik çünkü CPU'da bf16 genelde yok
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
|
29 |
+
|
30 |
+
# === 3️⃣ LoRA AYARLARI ===
|
31 |
+
lora_config = LoraConfig(
|
32 |
+
r=8,
|
33 |
+
lora_alpha=32,
|
34 |
+
lora_dropout=0.1,
|
35 |
+
bias="none",
|
36 |
+
target_modules=["q_proj", "v_proj"],
|
37 |
+
)
|
38 |
+
model = get_peft_model(model, lora_config)
|
39 |
+
|
40 |
+
# === 4️⃣ VERİ SETİ ===
|
41 |
+
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True) # 🔥 ÇÖZÜM: trust_remote_code=True
|
42 |
+
train_data = dataset["train"].shuffle(seed=42).select(range(10000)) # Küçük subset
|
43 |
+
|
44 |
+
# === 5️⃣ TOKENLEŞTİRME FONKSİYONU ===
|
45 |
+
def tokenize_function(examples):
|
46 |
+
return tokenizer(examples["text"], truncation=True, max_length=512)
|
47 |
+
|
48 |
+
tokenized_datasets = train_data.map(tokenize_function, batched=True)
|
49 |
+
|
50 |
+
# === 6️⃣ EĞİTİM AYARLARI ===
|
51 |
+
training_args = TrainingArguments(
|
52 |
+
output_dir="./mistral_lora_cpu",
|
53 |
+
per_device_train_batch_size=1,
|
54 |
+
gradient_accumulation_steps=16,
|
55 |
+
learning_rate=5e-4,
|
56 |
+
num_train_epochs=1,
|
57 |
+
save_steps=500,
|
58 |
+
save_total_limit=2,
|
59 |
+
logging_dir="./logs",
|
60 |
+
logging_steps=10,
|
61 |
+
optim="adamw_torch", # 🔥 ÇÖZÜM: bitsandbytes yerine adamw_torch
|
62 |
+
)
|
63 |
+
|
64 |
+
# === 7️⃣ MODEL EĞİTİMİ ===
|
65 |
+
@spaces.GPU
|
66 |
+
def trainf():
|
67 |
+
|
68 |
+
v= Trainer(
|
69 |
|
70 |
+
model=model,
|
|
|
|
|
71 |
|
72 |
+
args=training_args,
|
73 |
|
74 |
+
train_dataset=tokenized_datasets,
|
75 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
+
return v
|
78 |
+
|
79 |
+
trainf().train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|