Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,59 +3,61 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments,
|
|
3 |
from peft import LoraConfig, get_peft_model
|
4 |
from datasets import load_dataset
|
5 |
import gradio as gr
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
|
60 |
# === 7️⃣ MODEL EĞİTİMİ ===
|
61 |
@spaces.GPU
|
|
|
3 |
from peft import LoraConfig, get_peft_model
|
4 |
from datasets import load_dataset
|
5 |
import gradio as gr
|
6 |
+
@spaces.GPU
|
7 |
+
def main():
|
8 |
+
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME ===
|
9 |
+
MODEL_NAME = "mistralai/Mistral-7B-v0.1" # Hugging Face model adı
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
|
12 |
+
# === 2️⃣ CPU OPTİMİZASYONU ===
|
13 |
+
torch_dtype = torch.float32 # CPU için uygun dtype
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
|
15 |
+
|
16 |
+
# === 3️⃣ LoRA AYARLARI ===
|
17 |
+
lora_config = LoraConfig(
|
18 |
+
r=8,
|
19 |
+
lora_alpha=32,
|
20 |
+
lora_dropout=0.1,
|
21 |
+
bias="none",
|
22 |
+
target_modules=["q_proj", "v_proj"],
|
23 |
+
)
|
24 |
+
model = get_peft_model(model, lora_config)
|
25 |
+
|
26 |
+
# === 4️⃣ VERİ SETİ ===
|
27 |
+
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True) # trust_remote_code=True
|
28 |
+
subset = dataset["train"].shuffle(seed=42).select(range(10000)) # Küçük subset seçiyoruz (10.000 örnek)
|
29 |
+
|
30 |
+
# === 5️⃣ TOKENLEŞTİRME FONKSİYONU ===
|
31 |
+
@spaces.GPU
|
32 |
+
def tokenize_function(examples):
|
33 |
+
return tokenizer(examples["text"], truncation=True, max_length=512)
|
34 |
+
|
35 |
+
tokenized_datasets = subset.map(tokenize_function, batched=True)
|
36 |
+
|
37 |
+
# === 6️⃣ EĞİTİM AYARLARI ===
|
38 |
+
# Eğitimde kaç adım olduğunu hesaplayalım
|
39 |
+
train_size = len(tokenized_datasets) # 10,000 örnek
|
40 |
+
batch_size = 1 # Batch size 1
|
41 |
+
num_epochs = 1 # 1 epoch eğitimi
|
42 |
+
max_steps = (train_size // batch_size) * num_epochs # max_steps hesapla
|
43 |
+
|
44 |
+
training_args = TrainingArguments(
|
45 |
+
output_dir="./mistral_lora",
|
46 |
+
per_device_train_batch_size=1,
|
47 |
+
gradient_accumulation_steps=16,
|
48 |
+
learning_rate=5e-4,
|
49 |
+
num_train_epochs=1,
|
50 |
+
max_steps=max_steps, # Buraya max_steps parametresini ekliyoruz
|
51 |
+
save_steps=500,
|
52 |
+
save_total_limit=2,
|
53 |
+
logging_dir="./logs",
|
54 |
+
logging_steps=10,
|
55 |
+
optim="adamw_torch",
|
56 |
+
train_dataset=split_dataset["train"],
|
57 |
+
eval_dataset=split_dataset["test"],
|
58 |
+
no_cuda=True, # GPU kullanılmıyor
|
59 |
+
)
|
60 |
+
main()
|
61 |
|
62 |
# === 7️⃣ MODEL EĞİTİMİ ===
|
63 |
@spaces.GPU
|