kasim90 commited on
Commit
fd473a9
·
verified ·
1 Parent(s): c139ec7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -1
app.py CHANGED
@@ -26,6 +26,7 @@ def tokenize_function(examples):
26
 
27
  tokenized_datasets = dataset.map(tokenize_function, batched=True)
28
 
 
29
  # === 4️⃣ EĞİTİM AYARLARI ===
30
  training_args = TrainingArguments(
31
  output_dir="./mistral_lora",
@@ -38,15 +39,33 @@ training_args = TrainingArguments(
38
  logging_dir="./logs",
39
  logging_steps=10,
40
  optim="adamw_torch",
 
41
  )
42
 
 
43
  # === 5️⃣ GPU BAŞLATMA VE EĞİTİM ===
44
  @spaces.GPU
45
  def train_model():
46
- device = "cuda" if torch.cuda.is_available() else "cpu" # CUDA'yı sadece burada başlat!
 
 
47
  model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32).to(device)
48
  model = get_peft_model(model, lora_config)
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  trainer = Trainer(
51
  model=model,
52
  args=training_args,
@@ -55,6 +74,7 @@ def train_model():
55
  trainer.train()
56
  return "✅ Model Eğitimi Tamamlandı!"
57
 
 
58
  # === 6️⃣ BAŞLATMA ===
59
  if __name__ == "__main__":
60
  train_model() # Eğitimi başlat
 
26
 
27
  tokenized_datasets = dataset.map(tokenize_function, batched=True)
28
 
29
+ # === 4️⃣ EĞİTİM AYARLARI ===
30
  # === 4️⃣ EĞİTİM AYARLARI ===
31
  training_args = TrainingArguments(
32
  output_dir="./mistral_lora",
 
39
  logging_dir="./logs",
40
  logging_steps=10,
41
  optim="adamw_torch",
42
+ no_cuda=True, # 🔥 ÇÖZÜM: Ana süreçte GPU'yu başlatmayı engelle
43
  )
44
 
45
+
46
  # === 5️⃣ GPU BAŞLATMA VE EĞİTİM ===
47
  @spaces.GPU
48
  def train_model():
49
+ device = "cuda" if torch.cuda.is_available() else "cpu"
50
+
51
+ # Modeli burada yükle
52
  model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32).to(device)
53
  model = get_peft_model(model, lora_config)
54
 
55
+ # TrainingArguments burada tanımlandı!
56
+ training_args = TrainingArguments(
57
+ output_dir="./mistral_lora",
58
+ per_device_train_batch_size=1,
59
+ gradient_accumulation_steps=16,
60
+ learning_rate=5e-4,
61
+ num_train_epochs=1,
62
+ save_steps=500,
63
+ save_total_limit=2,
64
+ logging_dir="./logs",
65
+ logging_steps=10,
66
+ optim="adamw_torch",
67
+ )
68
+
69
  trainer = Trainer(
70
  model=model,
71
  args=training_args,
 
74
  trainer.train()
75
  return "✅ Model Eğitimi Tamamlandı!"
76
 
77
+
78
  # === 6️⃣ BAŞLATMA ===
79
  if __name__ == "__main__":
80
  train_model() # Eğitimi başlat