Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,51 +11,55 @@ processor = DetrImageProcessor.from_pretrained('facebook/detr-resnet-101')
|
|
11 |
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-101')
|
12 |
|
13 |
def object_detection(image, confidence_threshold):
|
14 |
-
|
15 |
-
|
16 |
-
image
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
# Define the Gradio interface
|
61 |
demo = gr.Interface(
|
|
|
11 |
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-101')
|
12 |
|
13 |
def object_detection(image, confidence_threshold):
|
14 |
+
try:
|
15 |
+
# Convert the input to a PIL Image object if it's not already
|
16 |
+
if not isinstance(image, Image.Image):
|
17 |
+
image = Image.open(io.BytesIO(image))
|
18 |
+
|
19 |
+
# Preprocess the image
|
20 |
+
inputs = processor(images=image, return_tensors="pt")
|
21 |
|
22 |
+
# Perform object detection
|
23 |
+
outputs = model(**inputs)
|
24 |
|
25 |
+
# Extract bounding boxes and labels
|
26 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
27 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=confidence_threshold)[0]
|
28 |
|
29 |
+
# Plot the image with bounding boxes
|
30 |
+
plt.figure(figsize=(16, 10))
|
31 |
+
plt.imshow(image)
|
32 |
+
ax = plt.gca()
|
33 |
|
34 |
+
detected_objects = []
|
35 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
36 |
+
box = [round(i, 2) for i in box.tolist()]
|
37 |
+
xmin, ymin, xmax, ymax = box
|
38 |
+
width, height = xmax - xmin, ymax - ymin
|
39 |
|
40 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), width, height, fill=False, color='red', linewidth=3))
|
41 |
+
text = f'{model.config.id2label[label.item()]}: {round(score.item(), 3)}'
|
42 |
+
ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5))
|
43 |
+
detected_objects.append(text)
|
44 |
|
45 |
+
plt.axis('off')
|
46 |
|
47 |
+
# Save the plot to an image buffer
|
48 |
+
buf = io.BytesIO()
|
49 |
+
plt.savefig(buf, format='png')
|
50 |
+
buf.seek(0)
|
51 |
+
plt.close()
|
52 |
|
53 |
+
# Convert buffer to an Image object
|
54 |
+
result_image = Image.open(buf)
|
55 |
|
56 |
+
# Join detected objects into a single string
|
57 |
+
detected_objects_text = "\n".join(detected_objects)
|
58 |
|
59 |
+
return result_image, detected_objects_text
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
return Image.new("RGB", (224, 224), color="white"), str(e)
|
63 |
|
64 |
# Define the Gradio interface
|
65 |
demo = gr.Interface(
|