Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,10 @@ processor = DetrImageProcessor.from_pretrained('facebook/detr-resnet-101')
|
|
11 |
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-101')
|
12 |
|
13 |
def object_detection(image, confidence_threshold):
|
|
|
|
|
|
|
|
|
14 |
# Preprocess the image
|
15 |
inputs = processor(images=image, return_tensors="pt")
|
16 |
|
@@ -56,7 +60,7 @@ def object_detection(image, confidence_threshold):
|
|
56 |
# Define the Gradio interface
|
57 |
demo = gr.Interface(
|
58 |
fn=object_detection,
|
59 |
-
inputs=[gr.Image(label="Upload an Image"), gr.Slider(minimum=0.0, maximum=1.0, label="Confidence Threshold")],
|
60 |
outputs=[gr.Image(label="Detected Objects"), gr.Textbox(label="Detected Objects List")],
|
61 |
title="Object Detection with DETR (ResNet-101)",
|
62 |
description="Upload an image and get object detection results using the DETR model with a ResNet-101 backbone."
|
|
|
11 |
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-101')
|
12 |
|
13 |
def object_detection(image, confidence_threshold):
|
14 |
+
# Convert the input to a PIL Image object if it's not already
|
15 |
+
if not isinstance(image, Image.Image):
|
16 |
+
image = Image.open(io.BytesIO(image))
|
17 |
+
|
18 |
# Preprocess the image
|
19 |
inputs = processor(images=image, return_tensors="pt")
|
20 |
|
|
|
60 |
# Define the Gradio interface
|
61 |
demo = gr.Interface(
|
62 |
fn=object_detection,
|
63 |
+
inputs=[gr.Image(label="Upload an Image"), gr.Slider(minimum=0.0, maximum=1.0, label="Confidence Threshold", default=0.5)],
|
64 |
outputs=[gr.Image(label="Detected Objects"), gr.Textbox(label="Detected Objects List")],
|
65 |
title="Object Detection with DETR (ResNet-101)",
|
66 |
description="Upload an image and get object detection results using the DETR model with a ResNet-101 backbone."
|