Spaces:
Runtime error
Runtime error
add custom dependencies
Browse files- clip_for_ppts.py +163 -0
- gpu_memory_utils.py +57 -0
- requirements.txt +4 -1
clip_for_ppts.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import clip
|
5 |
+
from PIL import Image
|
6 |
+
from pptx import Presentation
|
7 |
+
from pptx.enum.shapes import MSO_SHAPE_TYPE
|
8 |
+
import time
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
class ClipImage:
|
13 |
+
def __init__(self, path_of_ppt_folders, path_to_save_image_features, mode='image', device='cuda'):
|
14 |
+
"""
|
15 |
+
:param input_image_path: path of the input image (mode = 'image') or the actual text to be searched (mode='text')
|
16 |
+
:param path_of_ppt_folders: path of the folder containing all the ppt folders
|
17 |
+
:param path_to_save_image_features: path to save the image features
|
18 |
+
:param mode: 'image' or 'text' based on the type of input
|
19 |
+
:param device: device to run the model on
|
20 |
+
"""
|
21 |
+
# Path
|
22 |
+
directory = 'input_features'
|
23 |
+
path = os.path.join(path_to_save_image_features, directory)
|
24 |
+
if not os.path.exists(path):
|
25 |
+
# Create the directory
|
26 |
+
os.mkdir(path)
|
27 |
+
print("Directory '% s' created" % directory)
|
28 |
+
|
29 |
+
self.res = []
|
30 |
+
if not os.path.isdir(path_of_ppt_folders):
|
31 |
+
raise TypeError(
|
32 |
+
f"{path_of_ppt_folders} is not a directory. Please only enter a directory")
|
33 |
+
|
34 |
+
# if mode == 'image' and not os.path.exists(input_image_path):
|
35 |
+
# raise FileNotFoundError(f"{input_image_path} does not exist.")
|
36 |
+
if not os.path.exists(path_to_save_image_features) or not os.path.isdir(path_to_save_image_features):
|
37 |
+
raise FileNotFoundError(
|
38 |
+
f"{path_to_save_image_features} is not a directory or doesn't exist.")
|
39 |
+
self.mode = mode
|
40 |
+
self.path_of_ppt_folders = path_of_ppt_folders
|
41 |
+
self.path_to_save_image_features = path_to_save_image_features
|
42 |
+
self.device = device
|
43 |
+
|
44 |
+
# consider ViT-L/14 should be the best one
|
45 |
+
self.model, self.preprocess = clip.load('ViT-B/32', self.device)
|
46 |
+
|
47 |
+
#print("π RUNNING CLIP'S ONE-TIME ENCODING STEP... will be slow the first time, and hopefully only the first time.")
|
48 |
+
# passing in an image as a cheap hack, to make one funciton work for initial embedding.
|
49 |
+
#self.calculate_similarity('/home/rsalvi/chatbotai/rohan/ai-teaching-assistant-uiuc/lecture_slides/001/Slide1.jpeg')
|
50 |
+
#print("π₯ DONE with CLIP's ONE TIME ENCODING")
|
51 |
+
|
52 |
+
def text_to_image_search(self, search_text: str, top_k_to_return: int = 4):
|
53 |
+
""" Written after the fact by kastan, so that we don't have to call init every time. """
|
54 |
+
assert type(search_text) == str, f"Must provide a single string, instead I got type {type(search_text)}"
|
55 |
+
# self.create_input_features(search_text, mode='text')
|
56 |
+
self.mode = 'text'
|
57 |
+
return self.calculate_similarity(search_text, top_k_to_return)
|
58 |
+
|
59 |
+
# TODO: WIP.
|
60 |
+
def image_to_images_search(self, input_image, top_k_to_return: int = 4):
|
61 |
+
""" Written after the fact by kastan, so that we don't have to call init every time. """
|
62 |
+
self.mode = 'image'
|
63 |
+
return self.calculate_similarity(input_image, top_k_to_return)
|
64 |
+
|
65 |
+
|
66 |
+
def create_input_features(self, input_text_or_img):
|
67 |
+
if self.mode == 'image':
|
68 |
+
# Load the image
|
69 |
+
#input_image = Image.open(input_text_or_img) # Not needed as image comes from gradio in PIL format
|
70 |
+
# Preprocess the image
|
71 |
+
input_arr = torch.cat(
|
72 |
+
[self.preprocess(input_text_or_img).unsqueeze(0)]).to(self.device)
|
73 |
+
|
74 |
+
elif self.mode == 'text':
|
75 |
+
# Preprocess the text
|
76 |
+
input_arr = torch.cat(
|
77 |
+
[clip.tokenize(f"{input_text_or_img}")]).to(self.device)
|
78 |
+
|
79 |
+
# Encode the image or text
|
80 |
+
with torch.no_grad():
|
81 |
+
if self.mode == 'image':
|
82 |
+
input_features = self.model.encode_image(input_arr)
|
83 |
+
elif self.mode == 'text':
|
84 |
+
input_features = self.model.encode_text(input_arr)
|
85 |
+
input_features /= input_features.norm(dim=-1, keepdim=True)
|
86 |
+
return input_features
|
87 |
+
|
88 |
+
def new_most_similar_slide_file(self, top_k: int):
|
89 |
+
# Sort the results
|
90 |
+
ans = sorted(self.res, key=lambda x: x[2], reverse=True)
|
91 |
+
return ans[:top_k]
|
92 |
+
|
93 |
+
def calculate_similarity(self, input_text_or_img, topk_val: int = 4):
|
94 |
+
## Similarities across folders
|
95 |
+
self.res = []
|
96 |
+
all_similarities = []
|
97 |
+
slide_numbers = []
|
98 |
+
# Create the input features
|
99 |
+
input_features = self.create_input_features(input_text_or_img)
|
100 |
+
|
101 |
+
# Iterate through all the folders
|
102 |
+
ppts = list(os.listdir(self.path_of_ppt_folders))
|
103 |
+
#start_time = time.monotonic()
|
104 |
+
for i in ppts:
|
105 |
+
# Get the path of the folder containing the ppt images
|
106 |
+
imgs = list(os.listdir(os.path.join(self.path_of_ppt_folders, i)))
|
107 |
+
slide_numbers.append(imgs)
|
108 |
+
# Iterate through all the images and preprocess them
|
109 |
+
|
110 |
+
|
111 |
+
# Check if the preprocessed file exists and load it
|
112 |
+
img_flag = os.path.exists(
|
113 |
+
self.path_to_save_image_features+'/input_features'+"/slides_"+i+"_tensor.pt")
|
114 |
+
if img_flag:
|
115 |
+
image_features = torch.load(
|
116 |
+
self.path_to_save_image_features+'/input_features'+"/slides_"+i+"_tensor.pt", map_location=self.device)
|
117 |
+
else:
|
118 |
+
# Encode the images and save the encoding
|
119 |
+
with torch.no_grad():
|
120 |
+
image_input = torch.cat([self.preprocess(Image.open(os.path.join(
|
121 |
+
self.path_of_ppt_folders, i, image))).unsqueeze(0) for image in imgs]).to(self.device)
|
122 |
+
image_features = self.model.encode_image(image_input)
|
123 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
124 |
+
torch.save(image_features,
|
125 |
+
self.path_to_save_image_features+'/input_features'+"/slides_"+i+"_tensor.pt")
|
126 |
+
print("Saved the image features (for faster future loading) to: ",
|
127 |
+
self.path_to_save_image_features+"/slides_"+i+"_tensor.pt")
|
128 |
+
|
129 |
+
# Calculate the similarity between the input image and the images in the folder
|
130 |
+
|
131 |
+
# TODO: THIS REQUIRES REFACTOR. We're only looking in a SINGLE FOLDER. need to APPEND to similarity.
|
132 |
+
if self.mode == 'image':
|
133 |
+
similarity = (100.0 * input_features @
|
134 |
+
image_features.T).softmax(dim=-1)
|
135 |
+
all_similarities.append((i,similarity))
|
136 |
+
elif self.mode == 'text':
|
137 |
+
similarity = (100.0 * input_features @
|
138 |
+
image_features.T).softmax(dim=-1)
|
139 |
+
all_similarities.append((i,similarity))
|
140 |
+
|
141 |
+
|
142 |
+
## Looking over all the folders
|
143 |
+
similarity_results = []
|
144 |
+
|
145 |
+
for j in range(0,len(all_similarities)):
|
146 |
+
folder_name = all_similarities[j][0]
|
147 |
+
folder_values = all_similarities[j][1][0]
|
148 |
+
for i in range(0,len(folder_values)):
|
149 |
+
self.res.append((folder_name,slide_numbers[j][i],folder_values[i]))
|
150 |
+
|
151 |
+
#print(self.res)
|
152 |
+
|
153 |
+
return self.new_most_similar_slide_file(topk_val)
|
154 |
+
# Return the sorted results
|
155 |
+
|
156 |
+
# if __name__ == "__main__":
|
157 |
+
|
158 |
+
# demo = ClipImage('/home/rsalvi/chatbotai/rohan/ai-teaching-assistant-uiuc/lecture_slides','/home/rsalvi/chatbotai/rohan/ai-teaching-assistant-uiuc')
|
159 |
+
# #op = demo.image_to_images_search('/home/rsalvi/chatbotai/rohan/ai-teaching-assistant-uiuc/lecture_slides/01c/Slide5.jpeg')
|
160 |
+
# op = demo.text_to_image_search("Unsigned Bit Pattern")
|
161 |
+
# print(op)
|
162 |
+
# op = demo.text_to_image_search("Graycode")
|
163 |
+
# print(op)
|
gpu_memory_utils.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import GPUtil # pip install gputil
|
2 |
+
|
3 |
+
|
4 |
+
def get_gpu_ids_with_sufficient_memory(memory_requirement_GB):
|
5 |
+
'''
|
6 |
+
Returns the MINIMAL SET of GPU IDs that, combined, have at least `memory_requirement` MB of free memory.
|
7 |
+
You will need to use all returned GPU IDs to get the desired memory requirement.
|
8 |
+
It returns lower IDs first [0, 1, ...]
|
9 |
+
|
10 |
+
If `memory_requirement` is 0, returns all available GPUs.
|
11 |
+
If `memory_requirement` is not available, returns an empty list.
|
12 |
+
'''
|
13 |
+
memory_requirement_MB = float(memory_requirement_GB * 1024)
|
14 |
+
GPUs = sorted(GPUtil.getGPUs(), key=lambda x: x.memoryFree, reverse=True)
|
15 |
+
total_memory = sum(gpu.memoryFree for gpu in GPUs)
|
16 |
+
if memory_requirement_MB > total_memory:
|
17 |
+
return []
|
18 |
+
GPU_IDs = []
|
19 |
+
for gpu in GPUs:
|
20 |
+
if memory_requirement_MB <= 0:
|
21 |
+
break
|
22 |
+
GPU_IDs.append(gpu.id)
|
23 |
+
memory_requirement_MB -= gpu.memoryFree
|
24 |
+
return GPU_IDs
|
25 |
+
|
26 |
+
|
27 |
+
def get_device_with_most_free_memory():
|
28 |
+
'''
|
29 |
+
Returns the GPU ID of the GPU with the most free memory.
|
30 |
+
'''
|
31 |
+
GPUs = GPUtil.getGPUs()
|
32 |
+
return sorted(GPUs, key=lambda x: x.memoryFree, reverse=True)[0].id
|
33 |
+
|
34 |
+
|
35 |
+
def get_free_memory_dict(leave_extra_memory_unused_GiB: float = 2, leave_extra_memory_unused_gpu0_GiB: float = 3):
|
36 |
+
'''
|
37 |
+
Returns a dictionary of GPU IDs and their free memory, in MiB.
|
38 |
+
Compatible with huggingface Accelerate formatting: `max_memory=get_free_memory_dict()`
|
39 |
+
|
40 |
+
Accelerate seems to use more memory than we give it, so we default to telling Accelerate we have 2 GiB less than we actually do.
|
41 |
+
|
42 |
+
Example output:
|
43 |
+
{0: '24753MiB', 1: '26223MiB', 2: '25603MiB', 3: '9044MiB'}
|
44 |
+
'''
|
45 |
+
GPUs = GPUtil.getGPUs()
|
46 |
+
memory_map = {gpu.id: int(round(gpu.memoryFree)) for gpu in GPUs}
|
47 |
+
if leave_extra_memory_unused_GiB > 0:
|
48 |
+
for device_id, memory_MiB in memory_map.items():
|
49 |
+
memory_map[device_id] = memory_MiB - (leave_extra_memory_unused_GiB * 1024)
|
50 |
+
if leave_extra_memory_unused_gpu0_GiB > 0 and 0 in memory_map:
|
51 |
+
memory_map[0] = memory_map[0] - (leave_extra_memory_unused_gpu0_GiB * 1024)
|
52 |
+
|
53 |
+
# format to Accelerate's liking
|
54 |
+
for device_id, memory_MiB in memory_map.items():
|
55 |
+
memory_map[device_id] = f"{int(round(memory_MiB))}MiB"
|
56 |
+
|
57 |
+
return memory_map
|
requirements.txt
CHANGED
@@ -4,4 +4,7 @@ pinecone-client
|
|
4 |
sentence-transformers
|
5 |
pandas
|
6 |
langchain
|
7 |
-
|
|
|
|
|
|
|
|
4 |
sentence-transformers
|
5 |
pandas
|
6 |
langchain
|
7 |
+
gputil
|
8 |
+
clip
|
9 |
+
torch
|
10 |
+
transformers
|